Log in

Two Steady-State Creep Stages in Co-Al-W-Base Single-Crystal Superalloys at 1273 K/137 MPa

  • Topical Collection: Superalloys and Their Applications
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

With the aim of understanding how to further improve the creep resistance of Co-Al-W-base superalloys at higher temperature (> 1223 K), the creep behavior of a novel Co-Al-W-base single-crystal superalloy at 1273 K/137 MPa was systematically investigated. Several interrupted creep tests were performed and the main deformation mechanisms of characteristic creep stages were identified and correlated to both the γ/γ′ microstructural and dislocation substructural evolutions. Two steady-state creep stages were observed during the creep process. The interfacial dislocations and the formation of rafts were responsible for the first steady-state creep stage, while the second steady-state creep stage could be ascribed to interactions between stacking faults of different slip systems in an inverted γ/γ′ microstructure, e.g., the formation of Lomer–Cottrell locks by the leading partials of the SFs. The observed creep mechanisms were compared to those typical of Ni-base superalloys at similar creep conditions. It is suggested that a high stacking fault energy of the γ′ phase and a higher γ′ volume fraction may be favorable for creep resistance of Co-Al-W-base single-crystal superalloys by promoting the double steady-state creep phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.C. Reed: The Superalloys Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  2. A. Suzuki, H. Inui, T.M. Pollock: Annu. Rev. Mater. Res., 2015, vol. 45, pp. 345-68.

    Article  Google Scholar 

  3. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida: Sci., 2006, vol. 312, pp. 90-91.

    Article  Google Scholar 

  4. T.M. Pollock, R.D. Field: Dislocations in Solids, Elsevier, Amsterdam, 2002, pp. 547-18

    Google Scholar 

  5. F. Xue, H.J. Zhou, X.H. Chen, Q.Y. Shi, H. Chang, M.L. Wang, X.F. Ding, Q. Feng: Eurosuperalloys 2014, EDP Sciences, vol. 14, pp. 15002.

  6. M.S. Titus, A. Suzuki, T.M. Pollock: Superalloys 2012, TMS, 2012, pp. 823–32.

  7. F. Xue, H.J. Zhou, Q. Feng: JOM, 2014, vol. 66, pp. 2486-94.

    Article  Google Scholar 

  8. H.J. Zhou, H. Chang, Q. Feng: Scri. Mater., 2017, vol. 135, pp. 84-87.

    Article  Google Scholar 

  9. F. Xue, H.J. Zhou, Q.Y. Shi, X.H. Chen, H. Chang, M.L. Wang, Q. Feng: Scri. Mater., 2015, vol. 97, pp. 37-40.

    Article  Google Scholar 

  10. F. Xue, C.H. Zenk, L.P. Freund, M. Hoelzel, S. Neumeier, M. Göken: Scri. Mater., 2018, vol. 142, pp. 129-32.

    Article  Google Scholar 

  11. M.S. Titus, Y.M. Eggeler, A. Suzuki, T.M. Pollock: Acta Mater., 2015, vol. 82, pp. 530-39.

    Article  Google Scholar 

  12. C.M.F. Rae, R.C. Reed: Acta Mater., 2007, vol. 55, pp. 1067-81.

    Article  Google Scholar 

  13. X. Wu, P. Wollgramm, C. Somsen, A. Dlouhy, A. Kostka, G. Eggeler: Acta Mater., 2016, vol. 112, pp. 242-60.

    Article  Google Scholar 

  14. H. Mughrabi, W. Schneider, V. Sass, C. Lang: Strength Mater., 1994, pp. 705–08.

  15. W. Schneider, H. Mughrabi: Proc, 5th Int. Conf. Creep Fract. Eng. Mater. Struct. Institute of Metals, 1993, pp. 209–20.

  16. J.X. Zhang, J. Wang, H. Harada, Y. Koizumi: Acta Mater., 2005, vol. 53, pp. 4623-33.

    Article  Google Scholar 

  17. H. Mughrabi: Mater. Sci. Technol., 2013, vol. 25, pp. 191-04.

    Article  Google Scholar 

  18. K. Tanaka, M. Ooshima, N. Tsuno, A. Sato, H. Inui: Philos. Mag. A, 2012, vol. 92, pp. 4011-27.

    Article  Google Scholar 

  19. F. Xue, H.J. Zhou, X.F. Ding, M.L. Wang, Q. Feng: Mater. Lett., 2013, vol. 112, pp. 215-18.

    Article  Google Scholar 

  20. T.M. Pollock, A.S. Argon: Acta Metall., 1994, vol. 42, pp. 1859-74.

    Article  Google Scholar 

  21. R.A. Hobbs, G.J. Brewster, C.M.F. Rae, S. Tin: Superalloys 2008, TMS, 2008, pp. 171–80.

  22. P. Caron, C. Ramusat, F. Diologent: SuperaIloys 2008, TMS, 2008, pp. 159–67.

  23. A. Epishin, T. Link, U. Bruckner, P.D. Portella: Acta Mater., 2001, vol. 49, pp. 4017-23.

    Article  Google Scholar 

  24. L. Shi, J.J. Yu, C.Y. Cui, X.F. Sun: Mater. Sci. Eng. A, 2015, vol. 635, pp. 50-58.

    Article  Google Scholar 

  25. A. Fredholm, J.L. Strudel: Proc. 5th Int. Symp. Superalloys, TMS, 1993, pp. 211–20.

  26. N. Matan, D.C. Cox, C.M.F. Rae, R.C. Reed: Acta Mater., 1999, vol. 47, pp. 2031-45.

    Article  Google Scholar 

  27. P. Kontis, Z. Li, D.M. Collins, J. Cormier, D. Raabe, B. Gault: Scri. Mater., 2018, vol. 145, pp. 76-80.

    Article  Google Scholar 

  28. J. Coakley, D. Ma, M. Frost, D. Dye, D.N. Seidman, D.C. Dunand, H.J. Stone: Acta Mater., 2017, vol. 135, pp. 77-87.

    Article  Google Scholar 

  29. J. Svoboda, P. Lukáš: Acta Mater., 1998, vol. 46, pp. 3421-31.

    Article  Google Scholar 

  30. T.M. Pollock, A.S. Argon: Acta Metall., 1992, vol. 40, pp. 1-30.

    Article  Google Scholar 

  31. R.C. Reed, N. Matan, D.C. Cox, M.A. Rist, C.M.F. Rae: Acta Mater., 1999, vol. 47, pp. 3367-81.

    Article  Google Scholar 

  32. T.P. Gabb, S.L. Draper, D.R. Hull, R.A. Mackay, M.V. Nathal: Mater. Sci. Eng. A, 1989, vol. 118, pp. 59-69.

    Article  Google Scholar 

  33. M.V. Nathal, R.A. Mackay, R.V. Miner: Metall. Mater. Trans. A, 1989, vol. 20, pp. 133-41.

    Article  Google Scholar 

  34. L.J. Carroll, Q. Feng, T.M. Pollock: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1290-07.

    Article  Google Scholar 

  35. C.M.F. Rae, N. Matan, R.C. Reed: Mater. Sci. Eng. A, 2001, vol. 300, pp. 125-34.

    Article  Google Scholar 

  36. Y.Q. Sun, P.M. Hazzledine, M.A. Crimp, A. Couret: Philos. Mag. A, 1991, vol. 64, pp. 311-31.

    Article  Google Scholar 

  37. J.P. Hirth, J. Lothe: Theory of dislocations, Krieger, Malabar, 1982.

    Google Scholar 

  38. H. Rouault-Rogez, M. Dupeux, M. Ignat: Acta Metall., 1994, vol. 42, pp. 3137-48.

    Article  Google Scholar 

  39. J. Li, R.P. Wahi: Acta Metall., 1995, vol. 43, pp. 507-17.

    Article  Google Scholar 

  40. A. Mottura, A. Janotti, T.M. Pollock: Inter., 2012, vol. 28, pp. 138-43.

    Google Scholar 

  41. A. Mottura, A. Janotti, T.M. Pollock: Superalloys 2012, TMS, 2012, pp. 685–93.

  42. T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada: Acta Mater., 2004, vol. 52, pp. 3737-44.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (Grant No.: 2017YFB0702902) and National Natural Science Foundation of China (Grant No.: 51771019). The authors are very grateful to H.J Zhou, F. Xue, D.Z. Tang, and Y.S. Zhao for their contribution during the investigation of Co-base superalloys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Feng.

Additional information

Manuscript submitted March 14, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Antonov, S., Li, L. et al. Two Steady-State Creep Stages in Co-Al-W-Base Single-Crystal Superalloys at 1273 K/137 MPa. Metall Mater Trans A 49, 4079–4089 (2018). https://doi.org/10.1007/s11661-018-4776-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4776-z

Navigation