Log in

Martensite Formation in Conventional and Isothermal Tension of 304 Austenitic Stainless Steel Measured by X-ray Diffraction

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The temperature above which neither stress nor plastic strain can cause austenite to transform to martensite is determined for 304 austenitic stainless steel by X-ray diffraction measurements on specimens that were previously subjected to isothermal tension tests. The specimens were tested at 273 K, 298 K, 308 K, 333 K, and 373 K (0 °C, 25 °C, 35 °C, 60 °C, and 100 °C). A new isothermal testing technique was used not only for controlling the testing temperature but also for averting deformation-induced heating. Hence, the effect of temperature on the strain-induced martensite is decoupled from that of strain. The diffraction measurements reveal that the martensite volume fraction decreases linearly with the testing temperature up to a critical temperature, which is found by linearly extrapolating to zero martensite volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.B. Olson and M. Cohen, Metall. Trans. A, 1975, vol. 6A, pp 791-795.

    Article  Google Scholar 

  2. Meyers, M.A. and Chawla, K.K., Mechanical Metallurgy, Prentice-Hall, Englewood Cliffs, NJ, 1984, pp.467-493.

    Google Scholar 

  3. Z. Nishiyama, Martensitic Transformation, Academic Press, NY, 1978, pp. 263-292.

    Google Scholar 

  4. A.M. Beese, D. Mohr, Exp. Mech., 2011, vol. 51, pp. 667-676.

    Article  Google Scholar 

  5. M. Mukherjee, S.B. Singh and O.N. Mohanty, Metall. & Mat’l Trans., 2008, vol. 39A, pp. 2319-2328.

    Article  Google Scholar 

  6. Xu, Y., S. H. Zhang, M. Cheng, and H. W. Song: Scripta Mat., 2012, vol. 67, pp. 771-774.

    Article  Google Scholar 

  7. S.S. Hecker, M.G.. Stout, K.P. Staudhammer and J.L. Smith, Metall. Trans., 1982, vol. 13A, pp. 619-626.

    Article  Google Scholar 

  8. R.G. Stringfellow, D.M. Parks and G.B. Olson, Acta Metall. & Mater., 1992, vol. 40A, pp. 1703-1716.

    Article  Google Scholar 

  9. E.S. Perdahcıoglu and H.J.M. Geijselaers, Acta Mat., 2012, vol. 60, pp. 4409-4419.

    Article  Google Scholar 

  10. M.-G. Lee, S.-J. Kim, and H.-N. Han: Int. J. Plast., 2010, vol. 26, pp. 688–710.

    Article  Google Scholar 

  11. L.-E. Lindgren, M. Olsson and P. Carlsson, Int’l J. Plast., 2010, vol. 26, pp. 1576-1590.

    Article  Google Scholar 

  12. Y. Tomita and T. Iwamoto, Int’l. J. Mech. Sci., 1995, vol. 37, pp. 1295-1305.

    Article  Google Scholar 

  13. G.L. Huang, D.K. Matlock, and G. Krauss: Metall. Trans. A, 1989, vol. 20A, pp. 1239-1246.

    Article  Google Scholar 

  14. H.C. Shin, T.K. Kwon Ha, and Y.W. Chang: Scripta Mater., 2001, vol. 45, pp. 823–829.

    Article  Google Scholar 

  15. G.W. Cullen and Y.P. Korkolis, Int’l J. Solids & Struct, 2013, vol. 50, pp. 1621-1633.

    Article  Google Scholar 

  16. A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, and D.K. Matlock, Scripta Mat., 2004, vol. 50, pp. 1445-1449.

    Article  Google Scholar 

  17. K. Tsuzaki, T. Maki, and I. Tamura: J. Phys., 1982, vol. 43, pp. C4-423–C4-428.

  18. W.S. Farren and G.I. Taylor, Proc. Royal Soc. London, 1925, vol. A107, pp. 422-451.

    Article  Google Scholar 

  19. G.W. Cullen and Y.P Korkolis, University of New Hampshire, unpublished research, 2013.

  20. K.S. Raghavan and R.H. Wagoner: Metall. Trans. A, 1987, vol. 18A, pp. 2143-2150.

    Article  Google Scholar 

  21. B. Petit, N. Gey, M. Cherkaoui, B. Bolle, and M. Humbert, Int’l J. Plast., 2007, vol. 23, pp. 323-341.

    Article  Google Scholar 

  22. K.S. Raghavan: AK Steel, unpublished research, 2013.

  23. A.D. Krawitz: Introduction to Diffraction in Materials Science and Engineering, John Wiley, New York, 2001, pp. 128–43, 151–78, 240–60.

  24. R.E. Smallmann and A.H.W. Ngan: Physical Metallurgy and Advanced Materials, 7th ed., Butterworth Heinemann, Amsterdam, 2007, pp. 414–20.

    Google Scholar 

  25. B. Fultz, and J.M. Howe, Transmission Electron Microscopy and Diffractometry of Materials, third ed., Springer, Berlin, 2008, pp. 119-266.

    Google Scholar 

Download references

Acknowledgments

The help of Prof. J. Krzanowski and the graduate student Graham Cullen during this work is acknowledged with thanks, as is the support of the U.S. National Science Foundation through Grant CMMI-1031169.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis P. Korkolis.

Additional information

Manuscript submitted February 1, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moser, N.H., Gross, T.S. & Korkolis, Y.P. Martensite Formation in Conventional and Isothermal Tension of 304 Austenitic Stainless Steel Measured by X-ray Diffraction. Metall Mater Trans A 45, 4891–4896 (2014). https://doi.org/10.1007/s11661-014-2422-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2422-y

Keywords

Navigation