Log in

In-Situ TEM Observation of Twinning and Detwinning During Cyclic Loading in Mg

  • Symposium: Deformation, Damage, and Fracture of Light Metals and Alloys
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In-situ transmission electron microscopy (TEM) is used to directly observe twin evolution in Mg under tension and compression. Twins grow during tensile loading. Upon load reversal, the first-generation twin detwins by nucleation and growth of a second-generation twin within its volume. This mechanism for detwinning is different from the more traditional mechanism of detwinning by reverse motion of a twin boundary. Reloading in tension causes the second-generation twin to recede, leaving behind residual features. In compression, the second-generation twin re-nucleates in the area of this debris, and grows. Interactions between dislocations and twin boundaries change the character of the observed dislocations. Direct observation of such behavior aids in clearer understanding of the observed microstructures from post-mortem TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G Proust, C N Tomé, A Jain, and S R Agnew: Int. J. Plast., 2009, vol. 25, pp. 861–80.

    Article  Google Scholar 

  2. I J Beyerlein, R J McCabe, and C N Tomé: J. Mech. Phys. Solids, 2011, vol. 59, pp. 988–1003.

    Article  Google Scholar 

  3. C N Tomé, I J Beyerlein, J Wang, and R J McCabe: JOM, 2011, vol. 63, pp. 19–23.

    Article  Google Scholar 

  4. P G Partridge and R W Gardiner: Acta Metall., 1967, vol. 15, pp. 387–89.

    Article  Google Scholar 

  5. Q Yu, J Zhang, and Y Jiang: Philos. Mag. Lett., 2011, vol. 91, pp. 75765.

    Article  Google Scholar 

  6. J Wang, N Li, O Anderoglu, X Zhang, A Misra, J Y Huang, and J P Hirth: Acta Mater., 2010, vol. 58, pp. 2262–70.

    Article  Google Scholar 

  7. S R Agnew, J A Horton, and M H Yoo: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 851–58.

    Google Scholar 

  8. G.S. Kim, S. Yi, Y. Huang, and E. Lilleodden: MRS Symp. Proc., 2010, vol. 1224.

  9. T Obara, H Yoshinga, and S Morozumi: Acta Metall., 1973, vol. 21, pp. 845–53.

    Article  Google Scholar 

  10. S R Agnew and Ö Duygulu: Int. J. Plast., 2005, vol. 21, pp. 1161–93.

    Article  Google Scholar 

  11. Q Yu, L Qi, K Chen, R K Mishra, J Li, and A M Minor: Nano Lett., 2012, vol. 12, pp. 887–92.

    Article  Google Scholar 

  12. J Ye, R K Mishra, A K Sachdev, and A M Minor: Scripta Mater., 2011, vol. 64, pp. 292–95.

    Article  Google Scholar 

  13. E Lilleodden: Scripta Mater., 2010, vol. 62, pp. 532–35.

    Article  Google Scholar 

  14. L Wu, A Jain, D W Brown, G M Stoica, S R Agnew, B Clausen, D E Fielden, and P K Liaw: Acta Mater., 2008, vol. 56, pp. 688–95.

    Article  Google Scholar 

  15. D W Brown, A Jain, S R Agnew, and B Clausen: Mater. Sci. Forum, 2007, vol. 539–543, pp. 3407–13.

    Article  Google Scholar 

  16. R D Field and P A Papin: Ultramicroscopy, 2004, vol. 102, pp. 23–26.

    Article  Google Scholar 

  17. S.G. Song and G.T. Gray, III: Acta Metall. Mater., 1995, vol. 43, pp. 2339–50.

  18. D Bhattacharyya, EK Cerreta, R McCabe, M Niewczas, GT Gray, A Misra, and CN Tomé (2009) Acta Mater. 57:305–15.

    Article  Google Scholar 

  19. G Proust, G C Kaschner, I J Beyerlein, B Clausen, D W Brown, R J McCabe, and C N Tomé: Experimental Mechanics, 2010, vol. 50, pp. 125–33.

    Article  Google Scholar 

  20. L Wu, S R Agnew, D W Brown, G M Stoica, B Clausen, A Jain, D E Fielden, and P K Liaw: Acta Mater., 2008, vol. 56, pp. 3699–3707.

    Article  Google Scholar 

  21. A. Jain and S.R. Agnew: Magnesium Technology 2006, 2006, pp. 219–24.

  22. T Uota, T Suzu, S Fukumoto, and A Yamamoto: Mater. Trans. Jpn. Inst. Met., 2009, vol. 50, pp. 2118–20.

    Google Scholar 

  23. X Y Lou, M Li, R K Boger, S R Agnew, and R H Wagoner: Int. J. Plast., 2007, vol. 23, pp. 44–86.

    Article  Google Scholar 

  24. T Yasutomi and M Enoki: Mater. Trans. Jpn. Inst. Met., 2012, vol. 53, pp. 1611–16.

    Google Scholar 

  25. H. Wang, P.D. Wu, J. Wang, and C.N. Tomé: Int. J. Plast., 2013 (in press).

  26. E Roberts and P G Partridge: Acta Metall., 1966, vol. 14, pp. 513–27.

    Article  Google Scholar 

  27. P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, and M.J. Whelan (1977) Electron Microscopy of Thin Crystals, 2nd edn. Krieger Publishing Co., Malabar, FL.

    Google Scholar 

Download references

Acknowledgment

The current study was fully funded by the Department of Energy, Basic Energy Science Project FWP06SCPE401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin M. Morrow.

Additional information

Manuscript submitted March 14, 2013.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrow, B.M., McCabe, R.J., Cerreta, E.K. et al. In-Situ TEM Observation of Twinning and Detwinning During Cyclic Loading in Mg. Metall Mater Trans A 45, 36–40 (2014). https://doi.org/10.1007/s11661-013-1765-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1765-0

Keywords

Navigation