Log in

Austenite Grain Growth in Peritectic Solidified Carbon Steels Analyzed by Phase-Field Simulation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The formation of coarse columnar grains (CCGs) in the as-cast austenite structure of peritectic carbon steels is a serious problem in continuous casting processes. Recently, it was elucidated that the formation of CCGs is ascribed to a discontinuous grain growth. Furthermore, the critical condition for the discontinuous growth to occur was elicited on the basis of phase-field simulations and a theory of grain growth. In this study, by means of the phase-field simulations, the detailed investigation is carried out for the grain coarsening of the as-cast austenite structure. It is demonstrated in the two-dimensional simulations that the coarsest grain structure emerges by the discontinuous growth in the vicinity of the critical condition. In addition, a model for predicting the upper limit of grain size during the discontinuous growth is proposed. The model successfully describes the experimental result with reasonable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Schmidt and Å. Josefsson: Scand. J. Metall., 1974, vol. 3, pp. 193–99.

    CAS  Google Scholar 

  2. B. Mintz and J.M. Arrowsmith: Met. Technol., 1979, vol. 6, pp. 24–32.

    CAS  Google Scholar 

  3. Y. Maehara, K. Yasumoto, Y. Sugitani, and K. Gunji: Trans. ISIJ, 1985, vol. 25, pp. 1045–52.

    Article  CAS  Google Scholar 

  4. D.N. Crowther and B. Mintz: Mater. Sci. Technol., 1986, vol. 2, pp. 951–55.

    Article  CAS  Google Scholar 

  5. N. Yoshida, O. Umezawa, and K. Nagai: ISIJ Int., 2004, vol. 44, pp. 547–55.

    Article  CAS  Google Scholar 

  6. H.S. Kim, Y. Kobayashi, and K. Nagai: Acta Mater., 2006, vol. 54, pp. 2441–49.

    Article  CAS  Google Scholar 

  7. C. Bernhard, J. Reiter, and H. Presslinger: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 885–95.

    Article  CAS  Google Scholar 

  8. N. Yoshida, Y. Kobayashi, and N. Nagai: Tetsu-to-Hagané, 2004, vol. 90, pp. 198–205.

    CAS  Google Scholar 

  9. V. Karlinski de Barcellos, V. Lopes da Silva Gschwenter, H. Kytönen, C. Alexandre dos Santos, J. Alvares Spim, S. Louhenkilpi, and J. Miettinen: Steel Res. Int., 2010, vol. 81, pp. 461–71.

    Article  Google Scholar 

  10. J. Reiter, C. Bernhard, and H. Presslinger: Mater. Charact., 2008, vol. 59, pp. 737–46.

    Article  CAS  Google Scholar 

  11. S. Tsuchiya, M. Ohno, K. Matsuura, and K. Isobe: Acta Mater., 2011, vol. 59, pp. 3334–42.

    Article  CAS  Google Scholar 

  12. M. Ohno, S. Tsuchiya, and K. Matsuura: Acta Mater., 2011, vol. 59, pp. 5700–09.

    Article  CAS  Google Scholar 

  13. I. Steinbach and F. Pezzola: Physica D, 1999, vol. 134, pp. 385–93.

    Article  Google Scholar 

  14. S.G. Kim, D.I. Kim, W.T. Kim, and Y.B. Park: Phys. Rev. E, 2006, vol. 74, pp. 061605-1–061605-14.

  15. E.D. Hondros: Proc. R. Soc. London A, 1965, vol. 286, pp. 479–98.

    Article  CAS  Google Scholar 

  16. M. Apel, B. Böttger, J. Rudnizki, P. Schaffnit, and I. Steinbach: ISIJ Int., 2009, vol. 49, pp. 1024–29.

    Article  CAS  Google Scholar 

  17. M. Hillert: Acta Metall., 1965, vol. 13, pp. 227–38.

    Article  CAS  Google Scholar 

  18. E.A. Holm, N. Zacharopoulos, and D.J. Srolovitz: Acta Mater., 1998, vol. 46, pp. 953–64.

    Article  CAS  Google Scholar 

  19. CompuTherm LLC, http://www.computherm.com/.

  20. S. Tsuchiya, M. Ohno, and K. Matsuura: Acta Mater., 2012, in print.

Download references

Acknowledgments

This work was supported by 18th ISIJ Research Promotion Grant and Grant-in-Aid for Young Scientists (A) (No. 2268067) from MEXT, Japan. One author (M.O.) acknowledges partial financial support from the Next Generation Super Computing Project, Nano-science Program, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munekazu Ohno.

Additional information

Manuscript submitted August 5, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno, M., Tsuchiya, S. & Matsuura, K. Austenite Grain Growth in Peritectic Solidified Carbon Steels Analyzed by Phase-Field Simulation. Metall Mater Trans A 43, 2031–2042 (2012). https://doi.org/10.1007/s11661-011-1072-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1072-6

Keywords

Navigation