Log in

Effect of Composition and Deformation on Coarse-Grained Austenite Transformation in Nb-Mo Microalloyed Steels

  • Symposium: Austenite Formation and Decomposition IV
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermomechanical processing of microalloyed steels containing niobium can be performed to obtain deformed austenite prior to transformation. Accelerated cooling can be employed to refine the final microstructure and, consequently, to improve both strength and toughness. This general rule is fulfilled if the transformation occurs on a quite homogeneous austenite microstructure. Nevertheless, the presence of coarse austenite grains before transformation in different industrial processes is a usual source of concern, and regarding toughness, the coarsest high-angle boundary units would determine its final value. Sets of deformation dilatometry tests were carried out using three 0.06 pct Nb microalloyed steels to evaluate the effect of Mo alloying additions (0, 0.16, and 0.31 pct Mo) on final transformation from both recrystallized and unrecrystallized coarse-grained austenite. Continuous cooling transformation (CCT) diagrams were created, and detailed microstructural characterization was achieved through the use of optical microscopy (OM), field emission gun scanning electron microscopy (FEGSEM), and electron backscattered diffraction (EBSD). The resultant microstructures ranged from polygonal ferrite (PF) and pearlite (P) at slow cooling ranges to bainitic ferrite (BF) accompanied by martensite (M) for fast cooling rates. Plastic deformation of the parent austenite accelerated both ferrite and bainite transformation, moving the CCT curves to higher temperatures and shorter times. However, an increase in the final heterogeneity was observed when BF packets were formed, creating coarse high-angle grain boundary units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of FEI Company, Hillsboro, OR.

  2. JEOL is a trademark of Japan Electron Optics Ltd.

References

  1. G.I. Garcia: Int. Conf. Microalloying ‘95, ISS, Warrendale, PA, 1995, pp. 365–75.

    Google Scholar 

  2. S.G. Jansto: New Developments on Metallurgy and Applications of High Strength Steels Conf., Buenos Aires, 2008, TMS, Warrendale, PA, pp. 1313–26.

  3. N.A. McPherson: Ironmaking and Steelmaking, 2009, vol. 36, pp. 193–200.

    Article  CAS  Google Scholar 

  4. E.J. Czyryca, D.P. Kihl, and R. DeNale: AMPTIAC Q., 2003, vol. 7, pp. 63–70.

  5. B. Dutta, E. Valdés, and C.M. Sellars: Acta Metall. Mater., 1992, vol. 40, pp. 652–62.

    Google Scholar 

  6. M.G. Akben, I. Weiss, and J.J. Jonas: Acta Metall., 1981, vol. 29, pp. 111–21.

    Article  CAS  Google Scholar 

  7. O. Kwon, and A.J. DeArdo: Acta Metall. Mater., 1991, vol. 39, pp. 529–38.

    Article  CAS  Google Scholar 

  8. D.N. Hanlon, J. Sietsma, and S. van der Zwaag: ISIJ Int., 2001, vol. 41, pp. 1028–36.

    Article  CAS  Google Scholar 

  9. Y. van Leeuwen and J. Sietsma: Mater. Sci. Forum, 2007, vols. 539–543, pp. 4572–77.

    Article  Google Scholar 

  10. S. Cai and J.D. Boyd: Mater. Sci. Forum, 2005, vols. 500–501, pp. 171–78.

    Article  Google Scholar 

  11. H. Asahi, A. Yagi, and M. Ueno: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1375–81.

    Article  CAS  Google Scholar 

  12. T. Tanaka: Int. Met. Rev., 1981, vol. 26, pp. 185–212.

    CAS  Google Scholar 

  13. H. Meuser, F. Grimpe, S. Meimeth, C.J. Heckmann, and C. Träger: Mater. Sci. Forum, 2005, vols. 500–501, pp. 565–72.

    Article  Google Scholar 

  14. D. Chakrabarti, M. Strangwood, and C. Davis: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 780–95.

    Article  CAS  Google Scholar 

  15. P. Uranga, A.I. Fernández, B. López, and J.M. Rodriguez-Ibabe: 43rd Mechanical Working and Steel Processing Conf., ISS, Warrendale, PA, 2001, vol. 33, pp. 511–29.

  16. B.L. Bramfitt and J.G. Speer: Metall. Trans. A, 1990, vol. 21A, pp. 817–29.

    CAS  Google Scholar 

  17. T. Araki, I. Kozasu, H. Tankechi, K. Shibata, M. Enomoto, and H. Tamehiro, eds., Atlas for Bainitic Microstructures, ISIJ, Tokyo, 1992, vol. 1.

  18. H.I. Aaronson and H.A. Domian: Trans. AIME, 1966, vol. 236, pp. 781–96.

    CAS  Google Scholar 

  19. M. Hillert: in Solid-Solid Phase Transformations, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., TMS, Warrendale, PA, 1982, pp. 789–806.

  20. D.E. Coates: Metall. Trans., 1973, vol. 4, pp. 2313–25.

    Article  CAS  Google Scholar 

  21. T.B. Massalski: in Phase Transformations, ASM, Metals Park, OH, 1970, pp. 433–95.

    Google Scholar 

  22. M. Hillert: Metall. Trans. A, 1984, vol. 15A, pp. 411–19.

    CAS  Google Scholar 

  23. J. Cawley, C.F. Harris, and E.A. Wilson: New Aspects of Microstructures in Modern Low Carbon High Strength Steels Symp., ISIJ, Tokyo, 1994, pp. 11–14.

    Google Scholar 

  24. K. Shibata and K. Asakura: New Aspects of Microstructures in Modern Low Carbon High Strength Steels Symp., ISIJ, Tokyo, 1994, pp. 31–34.

    Google Scholar 

  25. G. Krauss and S.W. Thompson: ISIJ Int., 1995, vol. 35, pp. 937–45.

    Article  CAS  Google Scholar 

  26. H.K.D.H. Bhadeshia: Bainite in Steels, Transformations, Microstructure and Properties, 2nd ed., The Institute of Materials, London, 2001, pp. 277–79.

    Google Scholar 

  27. H.J. Lee, G. Spanos, G.J. Shiflet, and H.I. Aaronson: Acta Metall., 1988, vol. 36, pp. 1129–40.

    Article  CAS  Google Scholar 

  28. S. Zajac, V. Schwinn, and K.H. Tacke: Mater. Sci. Forum, 2005, vols. 500–501, pp. 387–94.

    Article  Google Scholar 

  29. R.F. Speyer: Thermal Analysis of Material, Marcel Dekker, Inc., New York, NY, 1994.

    Google Scholar 

  30. C. García de Andrés, F.B. Caballero, C. Capdevila, and H.K.D.H. Bhadeshia: Scripta Mater., 1998, vol. 39, pp. 791–96.

    Article  Google Scholar 

  31. ABAQUS Reference Manuals, Dassault Systèmes, Providence, RI, 2009.

  32. R. Petrov, L. Kestens, and Y. Houbaert: Mater. Charact., 2004, vol. 53, pp. 51–61.

    Article  CAS  Google Scholar 

  33. P. Cizek, B.P. Wynne, C.H.J. Davies, B.C. Muddle, and P.D. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1331–49.

    Article  CAS  Google Scholar 

  34. P.A. Manohar, T. Chandra, and C.R. Killmore: ISIJ Int., 2006, vol. 36, pp. 1486–93.

    Article  Google Scholar 

  35. I. Tamura: Int. Conf. Thermec ‘88, ISIJ, Tokyo, 1988, pp. 1–10.

    Google Scholar 

  36. T. Tanaka: Int. Conf. Microalloying 95, M. Korchynsky, A.J. DeArdo, P. Repas, and G. Tither, eds., Pittsburgh, ISS, Warrendale, PA, 1995, pp. 165–81.

  37. R. Bengochea, B. Lopez, and I. Gutierrez: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 417–26.

    Article  CAS  Google Scholar 

  38. R. Bengochea, B. Lopez, and I. Gutierrez: in Microalloying in Steels (μ-as 98), J.M. Rodriguez-Ibabe, I. Gutierrez, and B. Lopez, eds., San Sebastian, Spain, 1998, pp. 201–08.

  39. H.K.D.H. Bhadeshia: Bainite in Steels, Transformations, Microstructure and Properties, 2nd ed., The Institute of Materials, London, 2001, pp. 201–24.

    Google Scholar 

  40. A. Kazimierz and J. Lis: Mater. Sci. Forum, 2007, vol. 539–543, pp. 4620–25.

    Google Scholar 

  41. M. Umemoto, Z.H. Guo, and I. Tamura: Mater. Sci. Technol., 1987, vol. 3, pp. 249–55.

    CAS  Google Scholar 

  42. S. Zajac, T. Siwecki, B. Hutchinson, and M. Attlegard: Metall. Trans. A, 1991, vol. 22A, pp. 2681–94.

    CAS  Google Scholar 

  43. J.H. Beynon and C.M. Sellars: High Strength Low Alloy Steels Conf., Wollongong, 1984, TMS, Warrendale, PA, 1984, pp. 142–50.

  44. A. From and R. Sandström: Mater. Charact., 1999, vol. 42, pp. 111–22.

    Article  CAS  Google Scholar 

  45. T. Hanamura, F. Yin, and K. Nagai: ISIJ Int., 2004, vol. 44, pp. 610–17.

    Article  CAS  Google Scholar 

  46. T. Furuhara, H. Kawata, S. Morito, and T. Maki: Mater. Sci. Eng. A, 2006, vol. A431, pp. 228–36.

    CAS  Google Scholar 

  47. T. Furuhara, N. Takayama, and G. Miyamoto: Mater. Sci. Forum, 2010, vols. 638–642, pp. 3044–49.

    Article  Google Scholar 

  48. A. Lambert-Perlade, A.F. Gourgues, and A. Pineau: Acta Mater., 2004, vol. 52, pp. 2337–48.

    Article  CAS  Google Scholar 

  49. K. Fujiwara, S. Okaguchi, and H. Ohtani: ISIJ Int., 1995, vol. 35, pp. 1006–12.

    Article  CAS  Google Scholar 

  50. K. Fujiwara and S. Okaguchi: Mater. Sci. Forum, 1998, vols. 284–286, pp. 271–78.

    Article  Google Scholar 

  51. R.Y. Zhang and J.D. Boyd: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1448–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this work by the Spanish Science and Innovation Department (MAT2009-09250 project) is gratefully acknowledged. One of the authors (NI) acknowledges a research grant from the University of Navarra. PU is grateful to NSF and TMS for the MS&T’10 Conference registration fee funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Uranga.

Additional information

Manuscript submitted November 16, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isasti, N., Jorge-Badiola, D., Taheri, M.L. et al. Effect of Composition and Deformation on Coarse-Grained Austenite Transformation in Nb-Mo Microalloyed Steels. Metall Mater Trans A 42, 3729–3742 (2011). https://doi.org/10.1007/s11661-011-0624-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0624-0

Keywords

Navigation