Log in

Deformation Geometry and Through-Thickness Strain Gradients in Asymmetric Rolling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Experiments and simulations focusing on cold rolling under conditions where the work roll velocities are different (asymmetric rolling) have been performed to provide a basic framework for understanding the effects of the roll velocity ratio and deformation geometry on through thickness shear strain development. It is shown that deformation geometry, controlled by varying the reduction per pass, has a significant impact on the through thickness shear strain gradients at a given level of asymmetry. Large reductions per pass lead to more uniform through thickness shear strains, but lower overall shear strain magnitudes compared to rolling conditions involving small reductions per pass. Moreover, the results show that a critical value of the roll velocity ratio exists, for a fixed set of rolling conditions, above which the shear strains induced by asymmetric rolling remain unchanged. This is interpreted based on the relative importance of geometrically induced shear strains and those arising from frictional effects. In this context, the position of the neutral points plays a vital role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.-H. Kim, D.N. Lee: Acta Mater., 2001, vol. 49, pp. 2583–95

    Article  CAS  Google Scholar 

  2. S.H. Lee, D.N. Lee: Int. J. Mech. Sci., 2001, vol. 43, pp. 1997–2015

    Article  Google Scholar 

  3. S.-B. Kang, B.-K. Min, H.-W. Kim, D.S. Wilkinson, J. Kang: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3141–49

    Article  CAS  Google Scholar 

  4. J.-S. Lee, H.-T. Son, Y.-K. Kim, K.-Y. Lee, H.-M. Kim, I.-H. Oh: Key Eng. Mater., 2007, vols. 345–346, pp. 77–80

    Google Scholar 

  5. H. **, D.J. Lloyd: Mater. Sci. Eng., 2007, vol. A465, pp. 267–73

    CAS  Google Scholar 

  6. A.B. Richelsen: Int. J. Mech. Sci., 1997, vol. 39, pp. 1199–211

    Article  Google Scholar 

  7. H. Watanabe, T. Mukai, K. Ishikawa: J. Mater. Sci., 2004, vol. 39, pp. 1477–80

    Article  CAS  Google Scholar 

  8. Y.-M. Hwang, G.-Y. Tzou: Int. J. Mech. Sci., 1997, vol. 39, pp. 289–303

    Article  Google Scholar 

  9. T. Sakai, K. Yoneda, Y. Saito: Mater. Sci. Forum, 2002, vols. 396–402, pp. 309–14

    Article  Google Scholar 

  10. T. Sakai, S. Hamada, Y. Saito: Scripta Mater., 2001, vol. 44, pp. 2569–73

    Article  CAS  Google Scholar 

  11. H. **, D.J. Lloyd: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 997–1006

    CAS  Google Scholar 

  12. H. **, D.J. Lloyd: Mater. Sci. Forum, 2004, vols. 467–470, pp. 381–86

    Google Scholar 

  13. S.-H. Kim, J.K. Lee, and D.N. Lee: Proc. Ultra Fine Grained Materials II, Seattle, WA, 2002, TMS, Warrendale, PA, pp. 55–63

  14. D.N. Lee: Mater. Sci. Forum, 2004, vols. 449–452, pp. 1–6

    Google Scholar 

  15. J. Lee, D.N. Lee: Key Eng. Mater., 2007, vols. 340–341, pp. 619–26

    Google Scholar 

  16. Y. Nakaura, A. Watanabe, K. Ohori: J. Jpn. Inst. Light Met., 2007, vol. 57, pp. 67–73

    Article  CAS  Google Scholar 

  17. W.A. Backofen: Deformation Processing, Addison-Wesley, Reading, MA, 1972

    Google Scholar 

  18. R. Sowerby: Finite Strain Determination in Sheet Metal Stam**s (William Johnson Commem Vol), Pergamon Press, Oxford, United Kingdom, 1985, pp. 123–34

    Google Scholar 

  19. H. Ahmed, M.A. Wells, D.M. Maijer, B.J. Howes, M.R. van der Winden: Mater. Sci. Eng. A, 2005, vol. 390, pp. 278–90

    Article  CAS  Google Scholar 

  20. J. Go, W.J. Poole, M. Militzer, M.A. Wells: Mater. Sci. Technol., 2003, vol. 19, pp. 1361–68

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge discussions with Professor Warren J. Poole and the assistance of Professor Daan Maijer with finite element calculations. Materials were supplied for this work by Novelis Inc. and financial assistance provided by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Roumina.

Additional information

Manuscript submitted September 5, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roumina, R., Sinclair, C. Deformation Geometry and Through-Thickness Strain Gradients in Asymmetric Rolling. Metall Mater Trans A 39, 2495–2503 (2008). https://doi.org/10.1007/s11661-008-9582-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9582-6

Keywords

Navigation