Log in

Environmental Fatigue-Crack Surface Crystallography for Al-Zn-Cu-Mg-Mn/Zr

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The scanning electron microscope (SEM)–based electron backscattered diffraction (EBSD)/stereology technique quantitatively establishes distributions of the crystallographic characteristics of environmental-fatigue crack features for slightly overaged Al-Zn-Cu-Mg-X (X = Zr or Mn) alloys stressed in the low-growth-rate regime. Results for these homogeneous slip alloys conform to a substantial companion study of planar slip-prone Al-Cu-Mg/Li. Transgranular-crack characteristics are similar for the Mn and Zr variants, independent of grain size and recrystallization. Two morphologies of facetlike features exhibit a wide range of crystallographic orientations, change character at grain boundaries indicating an important role of grain orientation, and form in highly tensile-stressed spatial orientations about a crack tip. Similar characteristics for Al-Zn and Al-Cu suggest a common damage mechanism, speculatively attributed to hydrogen-environment embrittlement by decohesion. Slip-deformation band cracking resulting in facets near {111}, stimulated by H-enhanced localized plasticity, is not a viable mechanism for environmental fatigue. Repetitively stepped facets with surface curvature may involve H-enhanced cleavage along {100} or {110} planes subsequently distorted by plasticity. Broad-flat facets speculatively result from tensile stress-based cracking through dislocation cell structure, evolved by cyclic plasticity and containing trapped H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. L = Longitudinal (rolling and loading directions), T = transverse (width and crack propagation directions), and S = short transverse (thickness) direction.

  2. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. R.P. Gangloff: in Fatigue ‘02, A.F. Blom, ed., Engineering Materials Advisory Services, West Midlands, United Kingdom, 2002, pp. 3401–34

    Google Scholar 

  2. J. Petit, J. de Fouquet, G. Henaff: in Handbook on Fatigue Crack Propagation in Metallic Structures, A. Carpinteri, ed., Elsevier, New York, NY, 1994, pp. 1159–1204

    Google Scholar 

  3. J. Petit, G. Henaff, and C. Sarrazin-Baudoux: Comprehensive Structural Integrity, Pergamon Press, Oxford, United Kingdom, 2003, pp. 211–80

    Google Scholar 

  4. R.P. Wei and R.P. Gangloff: in Fracture Mechanics: Perspectives and Directions. 20th Symp, ASTM STP 1020, R.P. Wei and R.P. Gangloff, eds., ASTM, Phiadelphia, PA, 1989, pp. 233–64

  5. S. Suresh: Fatigue of Materials, 2nd ed., Cambridge University Press, London, 1998, pp. 335–51

    Google Scholar 

  6. R.S. Piascik, R.P. Gangloff: Metall. Trans. A, 1993, vol. 24A, pp. 2751–62

    CAS  Google Scholar 

  7. D.C. Slavik, C.P. Blankenship Jr., E.A. Starke Jr., R.P. Gangloff: Metall. Trans. A, 1993, vol. 24A, pp. 1807–17

    CAS  Google Scholar 

  8. D.C. Slavik, R.P. Gangloff: Acta Mater., 1996, vol. 44, pp. 3515–34

    Article  CAS  Google Scholar 

  9. D.C. Slavik, J.A. Wert, R.P. Gangloff: J. Mater. Res., 1993, vol. 8, pp. 2482–91

    Article  CAS  Google Scholar 

  10. T.H. Sanders, E.A. Starke Jr.: Acta Metall., 1982, vol. 30, pp. 927–39

    Article  CAS  Google Scholar 

  11. K.V. Jata, E.A. Starke Jr.: Metall. Trans. A, 1986, vol. 17A, pp. 1011–26

    CAS  Google Scholar 

  12. M. Lewandowska, J. Mizera, J.W. Wyrzykowski: Mater. Charact., 2000, vol. 45, pp. 195–202

    Article  CAS  Google Scholar 

  13. A. Brotzu, M. Cavallini, F. Felli, and M. Marchetti: in Fatigue in the Presence of Corrosion, RTO AVT Work Shop, NATO Report RTO-MP-18 (AC/323(AVT)TP/8), Corfu, Greece, 1998, pp. 8-1–8-12

  14. N. Ranganathan, F. Adiwijayanto, J. Petit, J.P. Bailon: Acta Metall. Mater., 1995, vol. 43, pp. 1029–35

    Article  CAS  Google Scholar 

  15. N. Ranganathan, S.Q. Li, J.P. Bailon, J. Petit: Mater. Sci. Eng. A, 1994, vol. 187, pp. 37–42

    Article  Google Scholar 

  16. G.R. Yoder, P.S. Pao, M.A. Imam, L.A. Cooley: Scripta Metall., 1988, vol. 22, pp. 1241–44

    Article  CAS  Google Scholar 

  17. Y.J. Ro, S.R. Agnew, R.P. Gangloff: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 3042–62

    Article  CAS  Google Scholar 

  18. P.J.E. Forsyth, C.A. Stubbington, D. Clarke: J. Inst. Met., 1961–1962, vol. 90, pp. 238–39

    Google Scholar 

  19. P.J.E. Forsyth: Acta Metall., 1963, vol. 11, pp. 703–15

    Article  Google Scholar 

  20. D.A. Meyn: Trans. ASM, 1968, vol. 61, pp. 42–51

    Google Scholar 

  21. G.G. Garrett, J.F. Knott: Acta Metall., 1975, vol. 23, pp. 841–48

    Article  CAS  Google Scholar 

  22. K.R.L. Thompson, J.V. Craig: Metall. Trans., 1970, vol. 1, pp. 1047–49

    CAS  Google Scholar 

  23. A.P. Reynolds, G.E. Stoner: Metall. Trans. A, 1991, vol. 22A, pp. 1849–55

    CAS  Google Scholar 

  24. S.P. Lynch: Corr. Sci., 1982, vol. 22, pp. 925–37

    Article  CAS  Google Scholar 

  25. C.Q. Bowles, D. Broek: Int. J. Fract., 1972, vol. 8, pp. 75–85

    Article  Google Scholar 

  26. R.M.N. Pelloux: Trans. ASM, 1969, vol. 62, pp. 281–85

    CAS  Google Scholar 

  27. A.D.B. Gingell, J.E. King: Acta Mater., 1997, vol. 45, pp. 3855–70

    Article  CAS  Google Scholar 

  28. M. Gao, P.S. Pao, R.P. Wei: Metall. Trans. A, 1988, vol. 19A, pp. 1739–50

    CAS  Google Scholar 

  29. K.J. Nix, H.M. Flower: Acta Metall., 1982, vol. 30, pp. 1549–59

    Article  Google Scholar 

  30. J.L. Nelson, J.A. Beavers: Metall. Trans. A, 1979, vol. 10A, pp. 658–62

    CAS  Google Scholar 

  31. Y.J. Ro, S.R. Agnew, R.P. Gangloff: Scripta Mater., 2005, vol. 52, pp. 531–36

    Article  CAS  Google Scholar 

  32. C.J. Beevers: Met. Sci., 1977, vol. 11, pp. 362–67

    CAS  Google Scholar 

  33. A. Deschamps, F. Livet, Y. Brechet: Acta Mater., 1998, vol. 47, pp. 281–92

    Article  Google Scholar 

  34. B.O. Kong, S.W. Nam: Mater. Lett., 1996, vol. 28, pp. 385–91

    Article  Google Scholar 

  35. K.C. Kim, S.W. Nam: Mater. Sci. Eng. A, 1998, vol. 244, pp. 257–62

    Article  Google Scholar 

  36. J.S. Vetrano, S.M. Bruemmer, L.M. Pawlowski, I.M. Robertson: Mater. Sci. Eng. A, 1997, vol. 238, pp. 101–07

    Article  Google Scholar 

  37. Test Method for Measurement of Fatigue Crack Growth Rates, ASTM E647-00, 03.0.1, ASTM International, West Conshocken, PA, 2000, pp. 627–69

  38. J.A. Wert, W.M. Robertson: Metallography, 1982, vol. 15, pp. 367–81

    Article  CAS  Google Scholar 

  39. P.-S. Chen, R.C. Wilcox: Mater. Charact., 1991, vol. 26, pp. 9–15

    Article  CAS  Google Scholar 

  40. J.A. Feeney, J.C. McMillan, R.P. Wei: Metall. Trans., 1970, vol. 1, pp. 1741–57

    Article  CAS  Google Scholar 

  41. R.W. Hertzberg and W.J. Mills: in Fractography—Microscopic Cracking Processes, ASTM STP 600, C.D. Beachem and W.R. Warke, eds., ASTM, Philadelphia, PA, 1976, pp. 220–34

  42. Y.J. Ro, S.R. Agnew, G.H. Bray, R.P. Gangloff: Mater. Sci. Eng. A, 2007, vol. 468–70, pp. 88–97

    Google Scholar 

  43. Y.J. Ro, S.R. Agnew, and R.P. Gangloff: 4th Int. Conf. on Very High Cycle Fatigue, J.E. Allison, J.W. Jones, J.M. Larsen, and R.O. Ritchie, eds., TMS-AIME, Warrendale, PA, 2007, pp. 409–20

  44. G.H. Bray, M. Glazov, R.J. Rioja, D. Li, R.P. Gangloff: Int. J. Fatigue, 2001, vol. 23, pp. S265–S276

    Article  CAS  Google Scholar 

  45. R. Sunder: Fatigue Fract. Eng. Mater. Struct., 2005, vol. 28, pp. 289–300

    Article  Google Scholar 

  46. F.O. Riemelmoser, P. Gumbsch, R. Pippan: Mater. Trans., 2001, vol. 42, pp. 2–13

    Article  CAS  Google Scholar 

  47. E. Gach and R. Pippan: in Advances in Fracture Research, T. Kishi, Y.-W. Mai, R.O. Ritchie, K. Ravi-Chandar, and A.T. Yokobori, Jr., eds., ICF 10, Elsevier Science, Oxford, United Kingdom, 2001, paper no. ICF100420OR

  48. T. Tabata, H.K. Birnbaum: Scripta Metall., 1983, vol. 17, pp. 947–50

    Article  CAS  Google Scholar 

  49. G.M. Bond, I.M. Robertson, H.K. Birnbaum: Acta Metall., 1987, vol. 35, pp. 2289–96

    Article  CAS  Google Scholar 

  50. I.M. Robertson: Eng. Fract. Mech., 1999, vol. 64, pp. 649–73

    Article  Google Scholar 

  51. I.M. Robertson: Eng. Fract. Mech., 2001, vol. 68, pp. 671–92

    Article  Google Scholar 

  52. P. Sofronis, I.M. Robertson: Philos. Mag. A, 2002, vol. 82, pp. 3405–13

    CAS  Google Scholar 

  53. P.J. Ferreira, I.M. Robertson, H.K. Birnbaum: Acta Mater., 1999, vol. 47, pp. 2991–98

    Article  CAS  Google Scholar 

  54. S.P. Lynch: Acta Metall., 1988, vol. 36, pp. 2639–61

    Article  CAS  Google Scholar 

  55. S.P. Lynch: Int. Conf. on Hydrogen Effects on Materials Behavior and Corrosion Deformation Interactions, N.R. Moody, A.W. Thompson, R. Ricker, G. Was, and R. Jones, eds., TMS, Warrendale, PA, 2002, pp. 449–66

  56. R.A. Oriani: Corrosion, 1987, vol. 43, pp. 390–97

    CAS  Google Scholar 

  57. R.A. Oriani: in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron-Base Alloys, R.W. Staehle, J. Hochmann, R.D. McCright, J.E. Slater, eds., NACE, Houston, TX, 1977, pp. 351–57

    Google Scholar 

  58. D.A. Koss, K.S. Chan: Acta Metall., 1980, vol. 28, pp. 1245–52

    Article  CAS  Google Scholar 

  59. E.I. Meletis, R.F. Hochman: Corros. Sci., 1984, vol. 24, pp. 843–62

    Article  CAS  Google Scholar 

  60. E.I. Meletis, R.F. Hochman: J. Test. Eval., 1984, vol. 12, pp. 142–48

    CAS  Google Scholar 

  61. D.A. Jones, A.F. Jankowski, and G.A. Davidson: Corrosion 97, NACE, Houston, TX, 1997, paper no. 188

  62. K.R. Cooper, L.M. Young, R.P. Gangloff, R.G. Kelly: Mater. Sci. Forum, 2000, vol. 331–33, pp. 1625–33

    Article  Google Scholar 

  63. H.K. Birnbaum, C. Buckley, F. Zeides, E. Sirois, P. Rozenak, S. Spooner, J.S. Lin: J. Alloys Compd., 1997, vol. 253, pp. 260–64

    Article  Google Scholar 

  64. G.M. Pressouyre: Acta Metall., 1980, vol. 28, pp. 895–911

    Article  CAS  Google Scholar 

  65. K. Sadananda, A.K. Vasudevan: Int. J. Fatigue, 2004, vol. 26, pp. 39–47

    Article  Google Scholar 

  66. J.C. Grosskreutz, G.G. Shaw: Acta Metall., 1972, vol. 20, pp. 523–28

    Article  CAS  Google Scholar 

  67. Y.J. Ro: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 2008

  68. V.S. Deshpande, A. Needleman, E. Van der Giessen: Acta Mater., 2003, vol. 51, pp. 4637–51

    Article  CAS  Google Scholar 

  69. A. Van der Ven, G. Ceder: Acta Mater., 2004, vol. 52, pp. 1223–35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the United States Air Force Office of Scientific Research (Grant No. F46920-03-1-0155) with Dr. Brett Conner as Scientific Officer, the ALCOA Technical Center with Dr. G.H. Bray as technical advisor, and the National Institute for Aerospace (Contract No. 6010-UV) with Dr. S. Smith of the NASA–Langley Research Center as technical monitor. The authors thank Professor A.D. Rollett, Carnegie Mellon University, for constructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Gangloff.

Additional information

Manuscript submitted March 29, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ro, Y., Agnew, S.R. & Gangloff, R.P. Environmental Fatigue-Crack Surface Crystallography for Al-Zn-Cu-Mg-Mn/Zr. Metall Mater Trans A 39, 1449–1465 (2008). https://doi.org/10.1007/s11661-008-9522-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9522-5

Keywords

Navigation