Log in

Application of solute drag theory to model ferrite formation in multiphase steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In novel multiphase steels for automotive applications, alloying elements are usually employed to control the austenite-ferrite transformation, in order to produce microstructures with an excellent combination of strength and formability. A revised austenite-to-ferrite transformation model for low-carbon steels is proposed which is applicable to industrial heat-treatment conditions of commercial steels. In the model, the effect of alloying elements on the transformation kinetics is described from a fundamental point of view. In the framework of the mixed-mode model in which carbon diffusion in the remaining austenite is coupled to the interface reaction, the partitioning and drag effect of the solute elements are explicitly accounted for. The thermodynamic driving pressure is calculated assuming paraequilibrium conditions, and the solute drag theory of Purdy and Brechet has been modified to remove the artifact of residual solute drag at zero interface velocity. This rather complex model employs, similarly to the semiempirical Johnson-Mehl-Avrami-Kolmogorov (JMAK) approach, four adjustable parameters. However, these parameters are now clearly defined in terms of their physics; i.e., they are pertinent to the interface mobility and solute-interface interaction. The model has been validated with experimental data for a C-Mn steel and two multiphase steels containing either Mo or Si as an additional alloying element. The physical relevance of the resulting solute drag parameters and the inherent challenges regarding their selection are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Shaw, B. Engl, C. Espina, E.C. Oren, and Y. Kawamoto: New Steel Sheet and Steel Bar Products and Processing, SAE-SP 1685, Society of Automotive Engineers, Warrendale, PA, 2002, pp. 63–71.

    Google Scholar 

  2. J.G. Speer and D.K. Matlock: JOM, 2002, vol. 54, pp. 19–24.

    CAS  Google Scholar 

  3. A. Pichler, S. Traint, H. Pauli, H. Mildner, J. Szinyur, M. Blaimschein, P. Stiaszny, and E. Werner: 43th Mechanical Working and Steel Processing Conf. Proc., 2001, ISS, Warrendale, PA, vol. XXXIX, pp. 411–34.

    Google Scholar 

  4. U. Brüx, G. Frommeyer, O. Grässel, L.W. Meyer, and A. Weise: Steel Res., 2002, vol. 73, pp. 294–98.

    Google Scholar 

  5. R.G. Kamat, E.B. Hawbolt, L.C. Brown, and J.K. Brimacombe: Metall. Trans. A, 1992, vol. 23, pp. 2469–80.

    Google Scholar 

  6. R.A. Vandermeer: Acta Metall. Mater., 1990, vol. 38, pp. 2461–70.

    Article  CAS  Google Scholar 

  7. J.R. Bradley, J.M. Rigsbee, and H.I. Aaronson: Metall. Trans. A, 1977, vol. 8A, pp. 323–33.

    CAS  Google Scholar 

  8. F. Fazeli and M. Militzer: 44th Mechanical Working and Steel Processing Conf. Proc., ISS, Warrendale, PA, 2002, vol. XL, pp. 1117–28.

    Google Scholar 

  9. G.P. Krielaart, J. Sietsma, and S. van der Zwaag: Mater. Sci. Eng. A, 1997, vol. A237, pp. 216–23.

    CAS  Google Scholar 

  10. J.R. Bradley and H.I. Aaronson: Metall. Trans. A, 1981, vol. 12A, pp. 1729–41.

    Google Scholar 

  11. M. Militzer, R. Pandi, and E.B. Hawbolt: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1547–56.

    CAS  Google Scholar 

  12. G.R. Purdy and Y.J.M. Brechet: Acta Metall. Mater., 1995, vol. 43, pp. 3763–74.

    Article  CAS  Google Scholar 

  13. F. Fazeli and M. Militzer: Steel Res., 2002, vol. 73, pp. 242–48.

    CAS  Google Scholar 

  14. J. Sietsma and S. van der Zwaag: Acta Mater., 2004, vol. 52, pp. 4143–52.

    Article  CAS  Google Scholar 

  15. J.W. Christian: The Theory of Transformation in Metals and Alloys, 2nd ed., Pergamon Press, Oxford, United Kingdom, 1982, pp. 433–70.

    Google Scholar 

  16. J. Ågren: Scripta Metall., 1986, vol. 20, pp. 1507–10.

    Article  Google Scholar 

  17. W.D. Murray and F. Landis: Trans. ASME, 1959, vol. 81, pp. 106–12.

    CAS  Google Scholar 

  18. J.S. Kirkaldy: Can. J. Phys., 1958, vol. 36, pp. 907–16.

    CAS  Google Scholar 

  19. G.R. Purdy, D.H. Weichert, and J.S. Kirkaldy: AIME Met. Soc. Trans., 1964, vol. 230, pp. 1025–34.

    CAS  Google Scholar 

  20. M. Hillert: “Paraequilibrium,” Internal Report, Swedish Institute of Metals Research, 1953.

  21. M. Hillert: Phase Equilibria, Phase Diagrams and Phase Transformations, Cambridge University Press, Cambridge, United Kingdom, 1998, pp. 349–67.

    Google Scholar 

  22. J.B. Glimour, G.R. Purdy, and J.S. Kirkaldy: Metall. Trans., 1972, vol. 3, pp. 1455–64.

    Google Scholar 

  23. M. Hillert: Acta Mater., 1999, vol. 47, pp. 4481–05.

    Article  CAS  Google Scholar 

  24. J. W. Cahn: Acta Metall., 1962, vol. 10, pp. 789–98.

    Article  CAS  Google Scholar 

  25. M. Hillert: The Mechanism of Phase Transformations in Crystalline Solids, Interscience, New York, NY, 1969, p. 131.

    Google Scholar 

  26. M. Hillert, J. Odqvist, and J. Ågren: Scripta Mater., 2001, vol. 45, pp. 221–27.

    Article  CAS  Google Scholar 

  27. G.P. Krielaart and S. van der Zwaag: Mater. Sci. Technol., 1998, vol. 14, pp. 10–18.

    CAS  Google Scholar 

  28. M. Hillert: Metall. Trans. A, 1975, vol. 6A, pp. 5–19.

    Google Scholar 

  29. F. Fazeli and M. Militzer: Transformation and Deformation Mechanisms in Advanced High-Strength Steels, M. Militzer, W.J. Poole, and E. Essadiqi, eds., TMS-CIM, Montreal, 2003, pp. 203–18.

    Google Scholar 

  30. H. Oikawa: Tetsu-to-Hagané, 1982, vol. 68, pp. 1489–97.

    CAS  Google Scholar 

  31. M. Enomoto: Acta Mater., 1999, vol. 47, pp. 3533–40.

    Article  CAS  Google Scholar 

  32. M. Hillert: Scripta Mater., 2002, vol. 46, pp. 447–53.

    Article  CAS  Google Scholar 

  33. Y. van Leeuwen, S.I. Vooijs, J. Sietsma, and S. van der Zwaag: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2925–31.

    Article  Google Scholar 

  34. M. Militzer and F. Fazeli: Proc. Int. Conf. on Thermomechanical Processing: Mechanics, Microstructure and Control, E.J. Palmiere, M. Mahfouf, and C. Pinna, eds., Sheffield, United Kingdom, 2002, pp. 109–14.

  35. S.H. Park, H.N. Han, J.K. Lee, and K.J. Lee: 40th Mechanical Working and Steel Processing Conf. Proc., ISS, Warrendale, PA, 1998, vol. XXXVI, pp. 283–91.

    Google Scholar 

  36. K. Oi, C. Lux, and G.R. Purdy: Acta Mater., 2000, vol. 48, pp. 2147–55.

    Article  CAS  Google Scholar 

  37. M.I. Mendelev and D.J. Srolovitz: Interface Sci., 2002, vol. 10, pp. 191–99.

    Article  CAS  Google Scholar 

  38. M. Guttmann: Surf. Sci., 1975, vol. 53, pp. 213–27.

    Article  CAS  Google Scholar 

  39. W.A. Johnson and R.F. Mehl: AIME Trans., 1939, vol. 135, pp. 416–42.

    Google Scholar 

  40. M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212–24.

    Article  CAS  Google Scholar 

  41. A.N. Kolmogorov: Izv. Akad. Nauk USSR. Ser. Mathemat., 1937, vol. 1, pp. 355–59.

    Google Scholar 

  42. I. Tamura, C. Ouchi, T. Tanaka, and H. Sekine: Thermomechanical Processing of High Strength Low Alloy Steels, Butterworth and Co., London, 1988, pp. 17–48.

    Google Scholar 

  43. E.B. Hawbolt, B. Chau, and J.K. Brimacombe: Metall. Trans. A, 1985, vol. 16A, pp. 565–78.

    CAS  Google Scholar 

  44. M. Militzer, E.B. Hawbolt, and T.R. Meadowcroft: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1247–59.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazeli, F., Militzer, M. Application of solute drag theory to model ferrite formation in multiphase steels. Metall Mater Trans A 36, 1395–1405 (2005). https://doi.org/10.1007/s11661-005-0232-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0232-y

Keywords

Navigation