Log in

Creep of tin, Sb-solution-strengthened tin, and SbSn-precipitate-strengthened tin

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The creep properties of tin-antimony alloys were studied up to the peritectic composition. For tin at temperatures below approximately 150 °C, creep is dominated by pipe diffusion-controlled climb with a stress exponent of 8 and activation energy of 70 kJ/mol. At high stresses, small amounts of impurities cause a transition to a less stress sensitive, most likely solute drag-controlled mechanism. Antimony atoms in solution have only a minor effect on these creep properties. Alloys with higher compositions of antimony contain whiskerlike SbSn precipitates. These alloys exhibit a discontinuous transition in stress exponent and activation energy at an intermediate stress. The creep behavior of these alloys is described fairly well by a composite theory in which the power law stress is divided by a strengthening coefficient, and the strengthening coefficient is related to the precipitate volume fraction and the aspect ratio. Using a friction stress and a strengthening coefficient simultaneously, the behavior of these alloys can be described entirely in terms of tin creep constants. Aging at 100 °C has little effect on the creep properties of the precipitation-strengthened alloys. It is expected that solder alloys strengthened by these precipitates would maintain a significant fraction of their creep strength for significant periods at temperatures below 100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.N. Wild, IBM Report No. 74Z000481, IBM, Oswego, New York, NY, 1975, p. 1.

    Google Scholar 

  2. H. Mavoori: JOM, 2000, vol. 52, p. 29.

    Google Scholar 

  3. Thermo-calc, L ed., Foundation for Computational Thermodynamics, Stockholm, 1996.

  4. R.J. McCabe: Ph.D. Thesis, Northwestern University, Evanston, IL, 2000, pp. 1–131.

    Google Scholar 

  5. J.E. Breen and J. Weertman: J. Met., 1955, vol. 207, pp. 1230–34.

    Google Scholar 

  6. S.H. Suh, J.B. Cohen, and J. Weertman: Metall. Trans. A, 1983, vol. 14A, pp. 117–26.

    Google Scholar 

  7. F.A. Mohamed, K.L. Murty, and J.W. Morris, Jr.: Metall. Trans., 1973, vol. 4, pp. 935–40.

    CAS  Google Scholar 

  8. M.D. Mathew, S. Movva, H. Yang, and K.L. Murty: Proc. Creep Behavior of Advanced Materials for the 21st Century, TMS, Warrendale, PA, 1999, pp. 51–59.

    Google Scholar 

  9. F.H. Huang and H.B. Huntington: Phys. Rev. B, 1974, vol. 9, pp. 1479–88.

    Article  CAS  Google Scholar 

  10. J.D. Meakin and E. Klokholm: Trans. TMS-AIME, 1960, vol. 218, pp. 463–66.

    CAS  Google Scholar 

  11. C. Coston and N.H. Nachtrieb: J. Phys. Chem., 1964, vol. 68, pp. 2219–29.

    Google Scholar 

  12. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, United Kingdom, 1982, pp. 1–40.

    Google Scholar 

  13. P. Adeva, G. Caruana, O.A. Ruano, and M. Torralba: Mater. Sci. Eng., 1994, vol. 194A, pp. 17–23.

    Google Scholar 

  14. J. Weertman: Trans. AIME, 1960, vol. 218, pp. 207–18.

    CAS  Google Scholar 

  15. A.H. Cottrell and M.A. Jaswon: Proc. R. Soc. London A, 1949, vol. 199, pp. 104–14.

    Article  CAS  Google Scholar 

  16. J.C. Fisher: Acta Metall., 1954, vol. 2, pp. 9–10.

    Article  Google Scholar 

  17. H. Suzuki: Sci. Rep. Res. Inst. Tohoku Univ. A, 1957, vol. 4, p. 455.

    Google Scholar 

  18. J. Snoek: Physica, 1942, vol. 9, pp. 862–64.

    Article  CAS  Google Scholar 

  19. D.L. Yaney and W.D. Nix: J. Mater. Sci., 1988, vol. 33, pp. 3088–98.

    Article  Google Scholar 

  20. Y. Li and T.G. Langdon: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 315–24.

    CAS  Google Scholar 

  21. D. Mitlin, C.H. Raeder, and R.W.J. Messler: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 115–22.

    CAS  Google Scholar 

  22. R.J. McCabe and M.E. Fine: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 575–80.

    Google Scholar 

  23. V.C. Nardone and J.K. Tien: Scripta Metall., 1983, vol. 17, pp. 467–70.

    Article  CAS  Google Scholar 

  24. E. Arzt and D.S. Wilkinson: Acta Metall., 1986, vol. 34, pp. 1893–98.

    Article  CAS  Google Scholar 

  25. J. Rösler and E. Arzt: Acta Metall., 1990, vol. 38, pp. 671–83.

    Article  Google Scholar 

  26. L.M. Brown and R.K. Ham: in Strengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., Elsevier, Amsterdam, 1971, pp. 9–135.

    Google Scholar 

  27. R.S.W. Shewfelt and L.M. Brown: Phil. Mag., 1974, vol. 30, pp. 1135–45.

    CAS  Google Scholar 

  28. M. McLean: Acta Metall., 1985, vol. 33, pp. 545–56.

    Article  CAS  Google Scholar 

  29. R. Lagneborg: Scripta Metall., 1973, vol. 7, pp. 605–14.

    Article  CAS  Google Scholar 

  30. J.D. Parker and B. Wilshire: Met. Sci, 1975, vol. 9, pp. 248–52.

    Article  CAS  Google Scholar 

  31. R.A. Stevens and P.E.J. Flewitt: Acta Metall., 1981, vol. 29, pp. 867–82.

    Article  CAS  Google Scholar 

  32. G. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties: a Handbook by Gene Simmons and Herbert Wang, 2nd ed., MIT Press, Cambridge, MA, 1971 pp. 1–370.

    Google Scholar 

  33. T. Christman, A. Needleman, and S. Suresh: Acta Metall., 1989, vol. 37, pp. 3029–50.

    Article  CAS  Google Scholar 

  34. T.L. Dragone and W.D. Nix: Acta Metall., 1990, vol. 38, pp. 1941–53.

    Article  Google Scholar 

  35. G. Bao, J.W. Hutchinson, and R.M. McMeeking: Acta Metall., 1991, vol. 39, pp. 1871–82.

    Article  Google Scholar 

  36. J. Rösler, G. Bao, and A.G. Evans: Acta Metall., 1991, vol. 39, pp. 2733–38.

    Article  Google Scholar 

  37. K.-T. Park and F.A. Mohamed: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 3119–29.

    CAS  Google Scholar 

  38. J. Rösler and M. Bäker: Acta Mater., 2000, vol. 48, pp. 3553–67.

    Article  Google Scholar 

  39. Y. Li and T.G. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2523–31.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCabe, R.J., Fine, M.E. Creep of tin, Sb-solution-strengthened tin, and SbSn-precipitate-strengthened tin. Metall Mater Trans A 33, 1531–1539 (2002). https://doi.org/10.1007/s11661-002-0075-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0075-8

Keywords

Navigation