Log in

Stearic Acid/Copper Foam as Composite Phase Change Materials for Thermal Energy Storage

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

The application of stearic acid in the latent thermal energy storage (LTES) systems is hindered due to its lower heat transfer rate. Stearic acid (SA) was blended with copper foam (CF) of pore numbers per inch (PPI) of 5, 20, and 40 to prepare composite phase change materials via a molten impregnation method. The thermal physical properties including latent heat, phase change temperature, and thermal energy storage density of composites were characterized. The thermogravimetric analysis indicated that the loadages of SA of SA/CF(5 PPI), SA/CF(20 PPI), and SA/CF(40 PPI) were 74.69%, 71.03%, and 63.54%, respectively; The latent heat of SA/CF(5 PPI), SA/CF(20 PPI), and SA/CF(40 PPI) were determined to 139.9 J-g-1, 132.7 J-g-1, and 117.8 J-g-1, respectively. Meanwhile, the infrared thermal images of SA and SA/CF composites were provided to demonstrate the thermal energy storage and dissipation capability intuitively by the temperature response and surface temperature distribution. The infrared thermal images indicated the addition of CF also reduced the fluidity of liquid SA, and the SA/CF(40 PPI) had better internal heat transfer uniformity and thermal diffusion performance than SA/CF(5 PPI) and SA/CF(20 PPI). All these thermal properties suggested SA/CF(40 PPI) has the potential application in the latent thermal energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang N., Yuan Y., Cao X., Du Y., Zhang Z., Gui Y., Latent heat thermal energy storage systems with solid-liquid phase change materials: A review. Advanced Engineering Materials, 2018, 20: 1700753.

    Article  Google Scholar 

  2. Li C., **e B., Chen D., Chen J., Li W., Chen Z., Gibb S.W., Long Y., Ultrathin graphite sheets stabilized stearic acid as a composite phase change material for thermal energy storage. Energy, 2019, 166: 246–255.

    Article  Google Scholar 

  3. Alva G., Liu L., Huang X., Fang G., Thermal energy storage materials and systems for solar energy applications. Renewable and Sustainable Energy Reviews, 2017, 68: 693–706.

    Article  Google Scholar 

  4. Liu S., Han J., Gao Q., Kang W., Ren R., Wang L., Chen D., Wu D., Laurie acid/bentonite/flake graphite composite as form-stable phase change materials for thermal energy storage. Materials Express, 2020, 10: 214–224.

    Article  Google Scholar 

  5. Li C., Wang M., **e B., Ma H., Chen J., Enhanced properties of diatomite-based composite phase change materials for thermal energy storage. Renewable Energy, 2020, 147: 265–274.

    Article  Google Scholar 

  6. Li C., Zhang B., **e B., Zhao X., Chen J., Tailored phase change behavior of Na2SO4T0H2O/expanded graphite composite for thermal energy storage. Energy Conversion and Management, 2020, 208: 112586.

    Article  Google Scholar 

  7. Gao X., Yuan Y., Cao X., Wu H., Zhao X., Yan D., Coupled cooling method and application of latent heat thermal energy storage combined with pre-cooling of envelope: Temperature control using phase-change chair. Sustainable Cities and Society, 2018, 42: 38–51.

    Article  Google Scholar 

  8. An Z., Jia L., Ding Y., Dang C., Li X., A review on lithium-ion power battery thermal management technologies and thermal safety. Journal of Thermal Science, 2017, 26: 391–412.

    Article  ADS  Google Scholar 

  9. Li C., Zhang B., **e B., Zhao X., Chen J., Chen Z., Long Y., Stearic acid/expanded graphite as a composite phase change thermal energy storage material for tankless solar water heater. Sustainable Cities and Society, 2019, 44: 458–464.

    Article  Google Scholar 

  10. Soni V., Kumar A., Jain V.K., Performance evaluation of nano-enhanced phase change materials during discharge stage in waste heat recovery. Renewable Energy, 2018, 127: 587–601.

    Article  Google Scholar 

  11. **a M., Yuan Y., Zhao X., Cao X., Tang Z., Cold storage condensation heat recovery system with a novel composite phase change material. Applied Energy, 2016, 175: 259–268.

    Article  Google Scholar 

  12. Romani J., Belusko M., Alemu A., Cabeza L.F., de Gracia A., Bruno E., Control concepts of a radiant wall working as thermal energy storage for peak load shifting of a heat pump coupled to a PV array. Renewable Energy, 2018, 118: 489–501.

    Article  Google Scholar 

  13. Pereira da Cunha J., Eames P., Thermal energy storage for low and medium temperature applications using phase change materials - A review. Applied Energy, 2016, 177: 227–238.

    Article  Google Scholar 

  14. Naplocha K., Dmitruk A., Kaczmar J., Lichota J., Smykowski D., Effects of cellular metals on the performances and durability of composite heat storage systems. International Journal of Heat and Mass Transfer, 2017, 114: 1214–1219.

    Article  Google Scholar 

  15. Sivasamy P., Devaraju A., Harikrishnan S., Review on heat transfer enhancement of phase change materials (PCMs). Materials Today: Proceedings, 2018, 5: 14423–14431.

    Google Scholar 

  16. Cardenas B., Leon N., High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renewable and Sustainable Energy Reviews, 2013, 27: 724–737.

    Article  Google Scholar 

  17. Zhang Q., Wang H., Ling Z., Fang X., Zhang Z., RT100/expand graphite composite phase change material with excellent structure stability, photo-thermal performance and good thermal reliability. Solar Energy Materials and Solar Cells, 2015, 140: 158–166.

    Article  Google Scholar 

  18. Ye S., Zhang Q., Hu D., Feng J., Core-shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage. Journal of Materials Chemistry A, 2015, 3: 4018–4025.

    Article  Google Scholar 

  19. Shang B., Hu J., Hu R., Cheng J., Luo X., Modularized thermal storage unit of metal foam/paraffin composite. International Journal of Heat and Mass Transfer, 2018, 125: 596–603.

    Article  Google Scholar 

  20. Tauseef ur R., Ali H.M., Janjua M.M., Sajjad U., Yan W.-M., A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. International Journal of Heat and Mass Transfer, 2019, 135: 649–673.

    Article  Google Scholar 

  21. Darzi M.E., Golestaneh S.I., Kamali M., Karimi G., Thermal and electrical performance analysis of co-electrospun-electrosprayed PCM nanofiber composites in the presence of graphene and carbon fiber powder. Renewable Energy, 2019, 135: 719–728.

    Article  Google Scholar 

  22. Gimenez P., Jove A., Prieto C., Fereres S., Effect of an increased thermal contact resistance in a salt PCM-graphite foam composite TES system. Renewable Energy, 2017, 106: 321–334.

    Article  Google Scholar 

  23. Hsu T.H., Chung C.H., Chung F.J., Chang C.C., Lu M.C., Chueh Y.L., Thermal hysteresis in phase-change materials: Encapsulated metal alloy core-shell microparticles. Nano Energy, 2018, 51: 563–570.

    Article  Google Scholar 

  24. Zhu Y., Chi Y., Liang S., Luo X., Chen K., Tian C., Wang J., Zhang L., Novel metal coated nanoencapsulated phase change materials with high thermal conductivity for thermal energy storage. Solar Energy Materials and Solar Cells, 2018, 176: 212–221.

    Article  Google Scholar 

  25. Qureshi Z.A., Ali H.M., Khushnood S., Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review. International Journal of Heat and Mass Transfer, 2018, 127: 838–856.

    Article  Google Scholar 

  26. Roller M., Walter H., Hameter M., Transient numerical simulation of the melting and solidification behavior of NaNO3 using a wire matrix for enhancing the heat transfer. Energies, 2016, 9: 205.

    Article  Google Scholar 

  27. Johnson M., Vogel J., Hempel M., Hachmann B., Dengel A., Design of high temperature thermal energy storage for high power levels. Sustainable Cities and Society, 2017, 35: 758–763.

    Article  Google Scholar 

  28. Ali H.M., Arshad A., Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices. International Journal of Heat and Mass Transfer, 2017, 112: 649–661.

    Article  Google Scholar 

  29. Song X., Thermal analysis of metal foam matrix composite phase change material. Journal of Thermal Science, 2015, 24: 386–390.

    Article  ADS  Google Scholar 

  30. Mustaffar A., Harvey A., Reay D., Melting of phase change material assisted by expanded metal mesh. Applied Thermal Engineering, 2015, 90: 1052–1060.

    Article  Google Scholar 

  31. Tian H., Du L., Wei X., Deng S., Wang W., Ding J., Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage. Applied Energy, 2017, 204: 525–530.

    Article  Google Scholar 

  32. Gimenez-Gavarrell P., Fereres S., Glass encapsulated phase change materials for high temperature thermal energy storage. Renewable Energy, 2017, 107: 497–507.

    Article  Google Scholar 

  33. Cao X., Yuan Y., **ang B., Sun L., **ngxing Z., Numerical investigation on optimal number of longitudinal fins in horizontal annular phase change unit at different wall temperatures. Energy and Buildings, 2018, 158: 384–392.

    Article  Google Scholar 

  34. Arshad A., Ali H.M., Khushnood S., Jabbal M., Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: Effect of pin-fin diameter. International Journal of Heat and Mass Transfer, 2018, 117: 861–872.

    Article  Google Scholar 

  35. Li T.X., Wu D.L., He E., Wang R.Z., Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage. International Journal of Heat and Mass Transfer, 2017, 115: 148–157.

    Article  Google Scholar 

  36. Wang C., Lin T., Li N., Zheng H., Heat transfer enhancement of phase change composite material: Copper foam/paraffin. Renewable Energy, 2016, 96: 960–965.

    Article  Google Scholar 

  37. Rehman T.-U., Ali H.M., Saieed A., Pao W., Ali M., Copper foam/PCMs based heat sinks: An experimental study for electronic cooling systems. International Journal of Heat and Mass Transfer, 2018, 127: 381–393.

    Article  Google Scholar 

  38. Wang Z., Zhang Z., Jia L., Yang L., Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery. Applied Thermal Engineering, 2015, 78: 428–436.

    Article  Google Scholar 

  39. Zhao C.Y., Wu Z.G., Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite. Solar Energy Materials & Solar Cells, 2011, 95: 636–643.

    Article  Google Scholar 

  40. Zhao C.Y., Zhou D., Wu Z.G., Heat transfer of phase change materials (PCMs) in porous materials. Frontiers inEnergy, 2011, 5: 174.

    Article  Google Scholar 

  41. Xu Y., Zhu G., Lv S., Shan B., He Y., Preparation and thermal properties of metal-based composite phase change material for high temperature thermal energy storage. Journal of Engineering Thermophysics, 2016, 37: 1371–1376.

    Google Scholar 

  42. Li C., **e B., He Z., Chen J., Long Y., 3D structure fungi-derived carbon stabilized stearic acid as a composite phase change material for thermal energy storage. Renewable Energy, 2019, 140: 862–873.

    Article  Google Scholar 

  43. Wang C., Zheng J., Yu Y., Influence of pore distribution on heat transfer characteristics of fractal foam metal based phase change materials. Chemical Industry and Engineering Progress, 2018, 37: 3540–3546.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51874047, 51504041); the Changsha City Fund for Distinguished and Innovative Young Scholars (kq1802007); the Fund for University Young Core Instructors of Hunan Province, China; the Outstanding Youth Project of Hunan Provincial Department of Education, China (18B148); the Innovation Program for Postgraduate of Hunan Province, China (CX20190688); and the Hunan Province 2011 Collaborative Innovation Center of Clean Energy and Smart Grid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanchang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhao, X., Zhang, B. et al. Stearic Acid/Copper Foam as Composite Phase Change Materials for Thermal Energy Storage. J. Therm. Sci. 29, 492–502 (2020). https://doi.org/10.1007/s11630-020-1272-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-020-1272-8

Keywords

Navigation