Log in

Genetic transformation of Linum by particle bombardment

  • Biotechnology/Genetic Transformation/Somatic Cell Genetics
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Linseed flax (Linum usitatissimum L.) was transformed by bombarding hypocotyl tissues with gold particles coated with plasmid DNA carrying the β-glucuronidase (GUS) (uid-A) and neomycin phosphotransferase II (npt-II) genes. Transient expression of the introduced β-glucuronidase gene was used to study factors influencing the DNA delivery, while progeny analyses confirmed stable transformation. The efficiency of DNA delivery, uptake and expression was significantly affected by the duration of hypocotyl preculture, bombardment distances, the level of chamber vacuum, the quantity of DNA, and the size of particles. Nineteen independent GUS-positive shoots were recovered and regenerated into whole plants, from which 10 plants successfully produced viable seeds. Analysis of T1 and T2 self pollinated progeny for histochemical and fluorometric GUS assays and polymerase chain reaction (PCR) analyses for uid-A, plus npt-II PCR and germination assays in progeny plants demonstrated that the transgenes were expressed in selected plants and transmitted to progeny, usually via a single Mendelian locus. The results show that particle bombardment can be used to produce transgenic Linum plants. The system is rapid, simple and offers an alternative to Agrobacterium methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beck, E.; Ludwig, G.; Auerswald, E. A.; Reiss, B.; Schaller, H. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19:327–336; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Christou, P.; Ford, T. L.; Kofron, M. Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9: 957–962; 1991.

    Article  Google Scholar 

  • Christou, P.; Swain, W. F.; Yang, N. S.; McCabe, D. Inheritance and expression of foreign genes in transgenic soybean plants. Proc. Natl. Acad. Sci. USA 86:7500–7504; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Dong, J. Z.; McHughen, A. Transgenic flax plants from Agrobacterium mediated transformation: incidence of chimeric regenerants and inheritance of transgenic plants. Plant Sci. 91:139–148; 1993.

    Article  CAS  Google Scholar 

  • Finer, J. J.; McMullen, M. D. Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep. 8:586–589; 1990.

    Article  Google Scholar 

  • Fitch, M. M. M.; Manshardt, R. M.; Gonsalves, D.; Slightom, J. L.; Sanford, J. C. Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep. 9:189–194; 1990.

    CAS  Google Scholar 

  • Fromm, M. E.; Morrish, F.; Armstrong, C.; Williams, R.; Thomas, J.; Klein, T. M. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8:833–839; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, R. A. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. 5:387–405; 1987.

    CAS  Google Scholar 

  • Jefferson, R. A.; Burgess, S. M.; Hirsh, D. β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl. Acad. Sci. USA 83:8447–8451; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, R. A.; Kavanagh, T. A.; Bevan, M. W. GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3907; 1987.

    PubMed  CAS  Google Scholar 

  • Jordan, M. C.; McHughen, A. Glyphosate tolerant flax plants from Agrobacterium mediated gene transfer. Plant Cell Rep. 7:281–284; 1988a.

    Article  CAS  Google Scholar 

  • Jordan, M. C.; McHughen, A. Transformed callus does not necessarily regenerate transformed shoots. Plant Cell Rep. 7:285–287; 1988b.

    Article  CAS  Google Scholar 

  • Klein, T. M.; Gradziel, T.; Fromm, M. E.; Sanford, J. C. Factors influencing gene delivery into Zea mays cells by high-velocity microprojectiles. Bio/Technology 6:559–563; 1988a.

    Article  CAS  Google Scholar 

  • Klein, T. M.; Harper, E. C.; Svab, Z.; Sanford, J. C.; Fromm, M. E.; Maliga, P. Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proc. Natl. Acad. Sci. USA 85:8502–8505; 1988b.

    Article  PubMed  CAS  Google Scholar 

  • Klein, T. M.; Wolf, E. D.; Wu, R.; Sanford, J. C. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature (Lond) 327:70–73; 1987.

    Article  CAS  Google Scholar 

  • McCabe, D. E.; Swain, W. F.; Martinell, B. J.; Christou, P. Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:923–926; 1988.

    Article  Google Scholar 

  • McHughen, A.; Jordan, M. C. Recovery of transgenic plants from “escape” shoots. Plant Cell Rep. 7:611–614; 1989.

    Google Scholar 

  • Mlynarova, L.; Bauer, M.; Nap, J. P.; Pretova, A. High efficiency Agrobacterium-mediated gene transfer to flax. Plant Cell Rep. 13:282–285; 1994.

    Article  CAS  Google Scholar 

  • Murray, B. E.; Handyside, R. J.; Keller, W. A. In vitro regeneration of shoots on stem explants of haploid and diploid flax (Linum usitatissimum). Can. J. Genet. Cytol. 19:177–186; 1977.

    Google Scholar 

  • Murray, M. G.; Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8:4321–4325; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski, W. P.; Somers, D. A. Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol. Biotechnol. 6:17–30; 1996.

    PubMed  CAS  Google Scholar 

  • Potrykus, I.; Paszkowski, J.; Saul, M. W.; Petruska, J.; Shilito, R. D. Molecular and general genetics of a hybrid foreign gene introduced into tobacco by direct gene transfer. Mol. Gen. Genet. 199:169–177; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Register, J. C., III; Peterson, D. J.; Bell, P. J.; Bullock, W. P.; Evans, I. J.; Frame, B.; Greenland, A. J.; Higgs, N. S.; Jepson, I.; Jiao, S.; Lewnau, C. J.; Sillick, J. M.; Wilson, H. M. Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol. Biol. 25:951–961; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. A.; Roy, M. K.; Sanford, J. C. Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physiol. 98:1050–1056; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Sanford, J. C.; Klein, T. M.; Wolf, E. D.; Allen, N. Delivery of substances into cells and tissues using a particle bombardment process. Particulate Sci. Technol. 5:27–37; 1987.

    CAS  Google Scholar 

  • Sanford, J. C.; Smith, F. D.; Russell, J. A. Optimizing the biolistic process for different biological applications. Methods Enzymol. 217:483–509; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, T. M.; O’Brien, J. V.; Start, W. G.; Adams, T. R.; Gordon-Kamm, W. J.; Lemaux, P. G. Segregation of transgenes in maize. Plant Mol. Biol. 18:201–210; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Tomes, D. T.; Weissinger, A. K.; Ross, M.; Higgins, R.; Drummond, B. J.; Schaaf, S.; Malone-Schoneberg, J.; Staebell, M.; Flynn, P.; Anderson, J.; Howard, J. Transgenic tobacco plants and their progeny derived by microprojectile bombardment of tobacco leaves. Plant Mol. Biol. 14:261–268; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Vancanneyt, G.; Schmidt, R.; O’Connor-Sanchez, A.; Willmitzer, L.; Rocha-Sosa, M. Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220:245–250; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Vasil, V.; Castillo, A. M.; Fromm, M. E.; Vasil, I. K. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10:667–674; 1992.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan McHughen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wijayanto, T., McHughen, A. Genetic transformation of Linum by particle bombardment. In Vitro Cell.Dev.Biol.-Plant 35, 456–465 (1999). https://doi.org/10.1007/s11627-999-0068-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-999-0068-z

Key words

Navigation