Log in

Genetic transformation and full recovery of alfalfa plants via secondary somatic embryogenesis

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

A genetic transformation method via secondary somatic embryogenesis was developed for alfalfa (Medicago sativa L.). Mature somatic embryos of alfalfa were infected by Agrobacterium strain GV3101 containing the binary vector pCAMBIA2301. pCAMBIA2301 harbors the uidA Gus reporter gene and npt II acts as the selectable marker gene. Infected primary embryos were placed on SH2K medium containing plant growth regulators to induce cell dedifferentiation and embryogenesis under 75 mg/L kanamycin selection. The induced calli were transferred to plant medium free of plant growth regulators for embryo formation while maintaining selection. Somatic embryos germinated normally upon transfer to a germination medium. Plants were recovered and grown in a tissue culture room before transfer to a greenhouse. Histochemical analysis showed high levels of GUS activity in secondary somatic embryos and in different organs of plants recovered from secondary somatic embryos. The presence and stable integration of transgenes in recovered plants were confirmed by polymerase chain reaction using transgene-specific primers and Southern blot hybridization using the npt II gene probe. The average transformation efficiency achieved via secondary somatic embryogenesis was 15.2%. The selection for transformation throughout the cell dedifferentiation and embryogenic callus induction phases was very effective, and no regenerated plants escaped the selection procedure. Alfalfa transformation is usually achieved through somatic embryogenesis using different organs of developed plants. Use of somatic embryos as explants for transformation can avoid the plant development phase, providing a faster procedure for introduction of new traits and facilitates further engineering of previously transformed lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Bellucci M, De Marchis F, Arcioni S (2007) Zeolin is a recombinant storage protein that can be used to produce value-added proteins in alfalfa (Medicago sativa L.). Plant Cell Tiss Organ Cult 90:85–91

    Article  CAS  Google Scholar 

  • Blaydes DF (1966) Interaction of kinetin and various inhibitors in the growth of soybean tissue. Physiol Plant 9:748–753

    Article  Google Scholar 

  • Bouton J (2007) The economic benefits of forage improvement in the United States. Euphytica 154:263–270

    Article  Google Scholar 

  • De Marchis F, Bellucci M, Arcioni S (2008) Agrobacterium-mediated genetic transformation of alfalfa. In: Kirti BP (ed) Handbook of new technologies for genetic improvement of legumes. CRC, Boca Raton, pp 29–43

    Chapter  Google Scholar 

  • Desgagnes R, Laberge S, Allard G, Khoudi H, Castonguay Y, Lapointe J, Michaud R, Vezina LP (1995) Genetic transformation of commercial breeding lines of alfalfa (Medicago sativa). Plant Cell Tiss Organ Cult 42:129–140

    Article  Google Scholar 

  • Du S, Erickson L, Bowley S (1994) Effect of plant genotype on the transformation of cultivated alfalfa (Medicago sativa) by Agrobacterium tumefaciens. Plant Cell Rep 13:330–334

    Article  CAS  Google Scholar 

  • Fiore MC, Trabace T, Sunseri F (1997) High frequency of plant regeneration in sunflower from cotyledons via somatic embryogenesis. Plant Cell Rep 16:295–298

    CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Han S, Kowalczys K, Latoszek-Green M, Brown DCW (2011) Agrobacterium-mediated genetic transformation of alfalfa through somatic embryogenesis. In: Aslam J, Srivastava PS, Sharma MP (eds) Somatic embryogenesis and genetic transformation in plants. Narosa, New Dehli, pp 219–250

    Google Scholar 

  • Hood EE, Gelvin SB, Melchersb LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the gus gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  • Koprek T, Rangel S, McElroy D, Louwerse JD, Williams-Carrier RE (2001) Transposon-mediated single-copy gene delivery leads to increased transgene expression stability in barley. Plant Physiol 125:1354–1362

    Article  PubMed  CAS  Google Scholar 

  • Leelavathi S, Sunnichan VG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS (2004) A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep 22:465–470

    Article  PubMed  CAS  Google Scholar 

  • Levee V, Garin E, Klimaszewska K, Seguin A (1999) Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Mol Breed 5:429–440

    Article  CAS  Google Scholar 

  • Lodhi MA, Ye GN, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12:6–13

    Article  CAS  Google Scholar 

  • McKersie BD, Brown DCW (1996) Somatic embryogenesis and artificial seeds in forage legumes. Seed Sci Res 6:109–126

    Article  Google Scholar 

  • McKersie BD, Senaratna T, Bowley S, Brown D, Krochko J, Bewley J (1989) Application of artificial seed technology in the production of hybrid alfalfa (Medicago sativa L.). In Vitro Cell Dev Biol Plant 25:1183–1188

    Article  Google Scholar 

  • Meza TJ, Kamfjord D, Håkelien AM, Evans I, Godager LH, Mandal A, Jakobsen KS, Aalen RB (2001) The frequency of silencing in Arabidopsis thaliana varies highly between progeny of siblings and can be influenced by environmental factors. Transgenic Res 10:53–67

    Article  PubMed  CAS  Google Scholar 

  • Montague A, Ziauddin A, Lee R, Ainley WM, Strommer J (2007) High-efficiency phosphinothricin-based selection for alfalfa transformation. Plant Cell Tiss Organ Cult 91:29–36

    Article  CAS  Google Scholar 

  • Murashige T, Skoog FA (1962) Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Namasivayam P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tiss Organ Cult 90:1–8

    Article  CAS  Google Scholar 

  • Ninković S, Miljuš-Djukić J, Nešković M (1995) Genetic transformation of alfalfa somatic embryos and their clonal propagation through repetitive somatic embryogenesis. Plant Cell Tiss Organ Cult 42:255–260

    Article  Google Scholar 

  • Ninković S, Miljuš-DuKic J, Vinterhalter B, Nešković M (2004) Improved transformation of alfalfa somatic embryos using a superbinary vector. Acta Biol Crac Ser Bot 46:139–143

    Google Scholar 

  • Radović J, Sokolovic D, Markovic J (2009) Alfalfa-most important perennial forage legume in animal husbandry. Biotech Anim Husbandry 25:465–475

    Article  Google Scholar 

  • Rosellini D, Capomaccio S, Ferradini N, Sardaro MLS, Nicolia A, Veronesi F (2007) Non-antibiotic efficient selection for alfalfa genetic engineering. Plant Cell Rep 26:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Rueb S, Leneman M, Schilperoort RA, Hensgens LAM (1994) Efficient plant regeneration through somatic embryogenesis from callus induced on mature rice embryos (Oryza sativa L.). Plant Cell Tiss Organ Cult 36:259–264

    Article  Google Scholar 

  • Samac DA, Austin-Phillips S (2006) Alfalfa (Medicago sativa L.). Agrobacterium protocols. In: Wang K (ed) Methods in molecular biology. Humana, Totowa, pp 301–311

    Google Scholar 

  • Saunders JW, Bingham ET (1972) Production of alfalfa plants from callus tissue. Plant Sci 12:804–808

    Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Shetty K, McKersie BD (1993) Proline, thioproline and potassium mediated stimulation of somatic embryogenesis in alfalfa (Medicago sativa L.). Plant Sci 88:185–193

    Article  CAS  Google Scholar 

  • Sun J, Li W, Zhang H, Zhao J, Yin X, Wang L (2009) Somatic embryogenesis and plant regeneration in glandless upland cotton (Gossypium hirsutum L.). Frontiers Agric China 3:279–283

    Article  Google Scholar 

  • Taniguchi T, Ohmiya Y, Kurita M, Tsubomura M, Kondo T (2008) Regeneration of transgenic Cryptomeria japonica D. Don after Agrobacterium tumefaciens-mediated transformation of embryogenic tissue. Plant Cell Rep 27:1461–1466

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Wang H, Wu K, Latoszek-Green M, Hu M, Miki B, Brown D (2002) Efficient recovery of transgenic plants through organogenesis and embryogenesis using a cryptic promoter to drive marker gene expression. Plant Cell Rep 20:1181–1187

    Article  CAS  Google Scholar 

  • Trinh TH, Ratet P, Kondorosi E, Durand P, Kamaté K, Bauer P, Kondorosi A (1998) Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp. falcata lines improved in somatic embryogenesis. Plant Cell Rep 17:345–355

    Article  CAS  Google Scholar 

  • Uzelac B, Ninković S, Smigocki A, Budimir S (2007) Origin and development of secondary somatic embryos in transformed embryogenic cultures of Medicago sativa. Biol Plant 51:1–6

    Article  Google Scholar 

  • Weeks JT, Ye J, Rommens CM (2008) Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Res 17:587–597

    Article  PubMed  CAS  Google Scholar 

  • Zhang BH, Liu F, Liu ZH, Wang HM, Yao CB (2001) Effects of kanamycin on tissue culture and somatic embryogenesis in cotton. Plant Growth Reg 33:137–149

    Article  Google Scholar 

  • Zhang H, Huang Q, Su J (2010) Development of alfalfa (Medicago sativa L.) regeneration system and Agrobacterium-mediated genetic transformation. Agri Sci China 9:170–178

    Article  CAS  Google Scholar 

  • Ziauddin A, Lee RWH, Lo R, Shewen P, Strommer J (2004) Transformation of alfalfa with a bacterial fusion gene, Mannheimia haemolytica A1 leukotoxin50-gfp: Response with Agrobacterium tumefaciens strains LBA4404 and C58. Plant Cell Tiss Organ Cult 79:271–278

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by China Scholarship Council. We thank Susan Sibbald, Sukhminder Sawhney and **nhua Wang for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lining Tian.

Additional information

Editor: J. Forster

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Liang, Z., Shan, C. et al. Genetic transformation and full recovery of alfalfa plants via secondary somatic embryogenesis. In Vitro Cell.Dev.Biol.-Plant 49, 17–23 (2013). https://doi.org/10.1007/s11627-012-9463-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-012-9463-y

Keywords

Navigation