Log in

CO2-enriched microenvironment affects sucrose and macronutrients absorption and promotes autotrophy in the in vitro culture of kiwi (Actinidia deliciosa Chev. Liang and Ferguson)

  • Micropropagation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

In traditional in vitro culture, the low CO2 concentration inside the vessels restricts photosynthesis and necessitates the addition of sucrose to the culture medium as the main energy source, thus bringing about changes in the absorption of mineral elements from the culture medium. In this study, we investigated macronutrient absorption and sugar consumption in Actinidia deliciosa Chevalier Liang and Ferguson cv. Hayward (kiwi), cultured on medium supplemented with varying amounts of sucrose (0, 10, and 20 g l−1) under both heterotrophy and autotrophy, flushed with different concentrations of CO2 (non-ventilation, 300, 600, and 2,000 μl l−1). In ventilated systems with 20 g l−1 of sucrose, sucrose absorption was less than under non-ventilation. The lowest rate of sucrose absorption was recorded when the explants were cultured on medium supplemented with 20 g l−1 of sucrose and flushed with 600 μl l−1 CO2. Absorption of NO3 , PO4 3−, and Mg2+ were high (maximum) at the end of the culture period (40 d) in explants flushed with 600 μl l−1 CO2 that have been cultured 20 d in the presence of sucrose and then transferred to a sucrose-free medium. These autotrophic conditions promoted maximum plant growth in terms of both fresh and dry mass as well as the length and number of shoots and leaves. The study shows that to maintain an optimum regime of mineral nutrition for prolonged culture of kiwi in vitro, an increased amount of these three ions should be supplemented in Murashige and Skoog’s medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  • Anderson W. C. A revised tissue culture medium for shoot multiplication of Rhododendron. J Amer Soc Hort Sci 109: 343–347; 1984.

    Google Scholar 

  • Arigita L.; González A.; Sánchez Tamés R. Influence of CO2 and sucrose on photosynthesis and transpiration of Actinidia deliciosa explants cultured in vitro. Physiol Plant 115: 166–173; 2002. doi:10.1034/j.1399-3054.2002.1150119.x.

    Article  CAS  PubMed  Google Scholar 

  • Arigita L.; Sánchez Tamés R.; González A. 1-Methylcyclopropene and ethylene as regulators of in vitro organogenesis in kiwi explants. Plant Growth Regul 40: 59–64; 2003. doi:10.1023/A:1023070131422.

    Article  CAS  Google Scholar 

  • Barbas E.; Chaillou S.; Cornu D.; Doumas P.; Jay-Allemand C.; Lamaze T. Orthophospahte nutrition of in vitro propagated hybrid walnut (Juglans nigra x Juglans regia) trees: Pi (32Pi) uptake and transport in relation to callus and shoot development. Plant Physiol Biochem 31: 41–49; 1993.

    CAS  Google Scholar 

  • Bergmeyer H. U.; Bernt E. Sucrose. In: Bermeyer H. U. (ed) Methods of enzymatic analysis. 2nd ed. Academic, New York, pp 1176–1179; 1974.

    Google Scholar 

  • Capellades M.; Lemeur R.; Debergh P. Effects of sucrose on starch accumulation and rate of photosynthesis in Rosa cultured in vitro. Plant Cell Tiss Org Cult 25: 21–26; 1991.

    Article  Google Scholar 

  • Cournac L.; Dimon B.; Carrier A.; Lohou A.; Chagvardieff P. Growth and photosynthetic characteristics of Solanum tuberosum plantlets cultivated in vitro in different conditions of aeration, sucrose supply, and CO2 enrichment. Plant Physiol 97: 112–117; 1991.

    Article  CAS  PubMed  Google Scholar 

  • Cozza R.; Turco D.; Briccoli-Bati C.; Bitonti M. B. Influence of growth medium on mineral composition and leaf histology in micropropagated plantlets of Olea europaea. Plant Cell Tiss Org Cult 51: 215–223; 1997.

    Article  CAS  Google Scholar 

  • Dantas A. K.; Majada J. P.; Fernández B.; Cañal M. J. Mineral nutrition in carnation tissue cultures under different ventilation conditions. Plant Growth Regul 33: 237–243; 2001. doi:10.1023/A:1017542106252.

    Article  CAS  Google Scholar 

  • Desjardins Y.; Hdider C.; De Riek J. Carbon nutrition in vitro regulation and manipulation of carbon assimilation in micropropagated systems. In: Aitken-Christie J.; Kozai T.; Smith M. L. (eds) Automation and environmental control in plant tissue culture. Kluwer Academic Publishers, Dordrecht, pp 441–471; 1995.

    Google Scholar 

  • Dimassi-Theriou K.; Bosabalidis A. M. Effects of light, magnesium and sucrose on leaf anatomy, photosynthesis, starch and total sugar accumulation, in kiwifruit cultured in vitro. Plant Cell Tiss Org Cult 47: 127–134; 1997.

    Article  Google Scholar 

  • Driver J. A.; Kuniyuki A. M. In vitro propagation of Paradox walnut rootstock. HortScience 19: 507–509; 1984.

    Google Scholar 

  • Dussert S.; Verdeil J. L.; Rival A.; Noirot M.; Buffard-Morel J. Nutrient uptake and growth of in vitro coconut (Cocos nucifera L.) calluses. Plant Sci 106: 185–193; 1995. doi:10.1016/0168-9452(95)04079-A.

    Article  CAS  Google Scholar 

  • Fuentes G.; Talavera C.; Desjardins Y.; Santamaría J. M. High irradiance can minimize the negative effect of exogenous sucrose on the photosynthetic capacity of in vitro grown coconut plantlets. Biol Plant 49(1): 7–15; 2005a. doi:10.1007/s10535-005-7015-6.

    Article  CAS  Google Scholar 

  • Fuentes G.; Talavera C.; Oropeza C.; Desjardins Y.; Santamaría J. M. Exogenous sucrose can decrease in vitro photosynthesis but improve field survival and growth of coconut (Cocos nucifera L.) in vitro plantlets. In Vitro Cell Dev Biol 41: 69–76; 2005b. doi:10.1079/IVP2004597.

    Article  CAS  Google Scholar 

  • Geiger M.; Haake V.; Ludewig F.; Sonnewald U.; Stitt M. The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant Cell Environ 22: 1177–1199; 1999.

    Article  Google Scholar 

  • George E. F.; Sherrington P. D. Plant propagation by tissue culture: handbook and directory of commercial laboratories. Exegetics Ltd, London; 1984.

    Google Scholar 

  • Goldner W.; Thom M.; Maretzki A. Sucrose metabolism in sugarcane suspension cultures. Plant Sci 73: 143–147; 1991. doi:10.1016/0168-9452(91)90021-Y.

    Article  Google Scholar 

  • Hdider C.; Vezina L. P.; Desjardins Y. Short-term studies of 15NO3 - and 15NH4 + uptake by micropropagated strawberry shoots cultured with or without CO2 enrichment. Plant Cell Tiss Org Cult 37: 185–191; 1994.

    Article  Google Scholar 

  • Karhu S. T. Sugar use in relation to shoot induction by sorbitol and cytokinin in apple. J Amer Soc Hort Sci 122: 476–480; 1997.

    CAS  Google Scholar 

  • Keutgen N.; Chen K.; Lenz F. Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. J Plant Physiol 150: 395–400; 1997.

    CAS  Google Scholar 

  • Kozai T.; Iwabuchi K.; Watanabe K.; Watanabe I. Photoautotrophic and photomixotrophic growth of strawberry plantlets in vitro and changes in nutrient composition of the medium. Plant Cell Tiss Org Cult 25: 107–115; 1991.

    Google Scholar 

  • Kubota C.; Kozai T. Growth and net photosynthetic rate of Solanum tuberosum in vitro under forced and natural ventilation. HortScience 27: 1312–1314; 1992.

    Google Scholar 

  • Langford P. J.; Wainwright H. Effects of sucrose concentration on the photosynthetic ability of rose shoots in vitro. Ann Bot 60: 633–640; 1987.

    CAS  Google Scholar 

  • Leifert C.; Lumsden P. J.; Pryce S.; Murphy K. Effects of mineral nutrition on growth of tissue cultured plants. In: Goulding K. H. (ed) Horticultural exploitation of recent biological developments. Lancashire Polytechnic Publication Service, Leuven, pp 43–57; 1991.

    Google Scholar 

  • Leifert C.; Pryce S.; Lumsden P. J.; Waites W. M. Effect of medium acidity on growth and rooting of different plants growing in vitro. Plant Cell Tiss Organ Cult 30: 171–179; 1992.

    Article  Google Scholar 

  • Leva A. R.; Barroso M.; Murillo J. M. La moltiplicazione del melo con la tecnica della micropropagazione. Variazione del pH in substrati diversi durante la fase di moltiplicazione. Riv della Ortofrutticolt 68: 483–492; 1984.

    Google Scholar 

  • Maretzki A.; Thom M.; Nickell L. G. Utilization and metabolism of carbohydrates in cell and callus cultures. In: Street H. E. (ed) Tissue culture and plant science. Academic, New York, pp 329–362; 1974.

    Google Scholar 

  • McCown B. H.; Sellmer J. C. General media and vessels suitable for woody plant culture. In: Bonga J. M.; Durzan D. J. (eds) Cell and tissue culture in forestry, vol I, General principles and biotechnology. Martinus Nijhoff, Dordrecht, pp 4–16; 1987.

    Google Scholar 

  • Mezzetti B.; Rosati P.; Casalicchio G. Actinidia deliciosa CF. Liang in vitro. I. Growth and mineral uptake by explants. Plant Cell Tiss Org Cult 25: 91–98; 1991.

    CAS  Google Scholar 

  • Moncaleán P.; Cañal M. J.; Feito I.; Rodríguez A.; Fernández B. Cytokinins and mineral nutrition in Actinidia deliciosa shoots cultured in vitro. J Plant Physiol 155: 606–612; 1999.

    Google Scholar 

  • Moncaleán P.; Cañal M. J.; Fernández H.; Fernández B.; Rodríguez A. Nutritional and gibberellic acid requirements in kiwifruit vitroponic cultures. In vitro Cell Dev Biol Plant 39: 49–55; 2003. doi:10.1079/IVP2002371.

    Article  CAS  Google Scholar 

  • Morard P.; Fulcheri C.; Henri M. Kinetics of mineral nutrient uptake by Saponaria officinalis L. suspension cell cultures in different media. Plant Cell Rep 18: 260–265; 1998. doi:10.1007/s002990050568.

    Article  CAS  Google Scholar 

  • Morard P.; Fulcheri C.; Henry M. Mineral nutrition of Gypsophila in vitro root culture. J Plant Nut 22: 717–730; 1999.

    Article  CAS  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497; 1962. doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  • Nordstrom A. C.; Eliasson L. Uptake and translocation of [14C] labelled benzylaminopurine in apple shoots grown in vitro in relation to shoot development. Physiol Plant 68: 431–435; 1986.

    Article  Google Scholar 

  • Pospisilova J.; Catsky J.; Sestak Z. Photosynthesis in plants cultivated in vitro. In: Pessarakli M. (ed) Handbook of photosynthesis. Marcel Dekker, New York, pp 525–540; 1997.

    Google Scholar 

  • Rival A.; Beule T.; Lavergne D.; Nato A.; Havaux M.; Puard M. Development of photosynthetic characteristics in oil palm during in vitro micropropagation. J Plant Physiol 150: 520–527; 1997.

    CAS  Google Scholar 

  • Sallanon H.; Isaka H.; Dimon B.; Ravel C.; Chagvardieff P. CO2 exchanges and nutrient uptake during multiplication and rooting of micropropagated Juglans regia plantlets. Plant Sci 124: 107–116; 1997. doi:10.1016/S0168-9452(97)04591-3.

    Article  CAS  Google Scholar 

  • Salsac L.; Chaillou S.; Morot-Gaudry J. F.; Lesaint C.; Jolivet E. Nitrate and ammonium nutrition in plants. Plant Physiol Biochem 25: 805–812; 1987.

    Google Scholar 

  • Sarkar D.; Pandey S.; Chanemougasoundharam A.; Sud K. C. The role of calcium nutrition in potato (Solanum tuberosum) microplants in relation to minimal growth over prolonged storage in vitro. Plant Cell Tiss Org Cult 81: 221–227; 2005. doi:10.1007/s11240-004-5213-0.

    Article  Google Scholar 

  • Schmitz U.; Lörz H. Nutrient uptake in suspension cultures of graminae. II. Suspension cultures of rice (Oryza sativa L.). Plant Sci 66: 95–111; 1990. doi:10.1016/0168-9452(90)90174-M.

    Article  CAS  Google Scholar 

  • Sha L.; McCown B. H.; Peterson L. A. Occurrence and cause of shoot-tip necrosis in shoot cultures. J Amer Soc Hort Sci 110: 631–634; 1985.

    Google Scholar 

  • Singha S.; Oberley G. H.; Townsend E. C. Changes in nutrient composition and pH of the culture medium during in vitro shoot proliferation of crabapple and pear. Plant Cell Tiss Org Cult 11: 209–220; 1987.

    Article  Google Scholar 

  • Skirvin R. M.; Chu M. C.; Mann M. L.; Young H.; Sullivan J.; Fermanian T. Stability of tissue culture medium pH as a function of autoclaving, time and cultured plant material. Plant Cell Rep 5: 282–294; 1986.

    Article  Google Scholar 

  • Stafford A.; Fowler M. Effect of carbon dioxide and nitrogen growth limitation upon nutrient uptake and metabolism in batch cultures of Catharantus roseus (L.) G. Don. Plant Cell Tiss Org Cult 2: 230–251; 1983.

    Article  Google Scholar 

  • Van Huylenbroeck J. M.; Debergh P. C. Impact of sugar concentration in vitro on photosynthesis and carbon metabolism during ex vitro acclimatization of Spathiphyllum plantlets. Physiol Plant 96: 298–304; 1996.

    Article  Google Scholar 

  • Wendler R.; Veith R.; Dancer J.; Stitt M.; Komor E. Sucrose storage in cell suspension cultures of Saccharum sp (sugarcane) is regulated by a cycle of synthesis and degradation. Planta 183: 31–39; 1991. doi:10.1007/BF00197564.

    Article  CAS  Google Scholar 

  • Williams R. R. Mineral nutrition in vitro—a mechanistic approach. Aust J Bot 41: 237–251; 1993.

    Article  CAS  Google Scholar 

  • Williams R. R.; Taji A. M.; Winney K. A. The effect of Ptilotus plant tissue on pH of in vitro media. Plant Cell Tiss Org Cult 22: 153–158; 1990.

    Article  Google Scholar 

  • Xu D. Q.; Gifford R. M.; Chow W. S. Photosynthetic acclimation in pea and soybean to high atmospheric CO2 partial pressure. Plant Physiol 106: 661–671; 1994.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Dirección General de Educación (PB-96/1460). LA was the recipient of a pre-doctoral fellowship from FICYT, (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aida González.

Additional information

Editor: R. P. Niedz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arigita, L., Cañal, M.J., Tamés, R.S. et al. CO2-enriched microenvironment affects sucrose and macronutrients absorption and promotes autotrophy in the in vitro culture of kiwi (Actinidia deliciosa Chev. Liang and Ferguson). In Vitro Cell.Dev.Biol.-Plant 46, 312–322 (2010). https://doi.org/10.1007/s11627-009-9267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9267-x

Keywords

Navigation