Log in

Molecular Mechanism Underlying the Detection of Colorectal Cancer by 18F-2-Fluoro-2-Deoxy-d-Glucose Positron Emission Tomography

  • Original Article
  • Published:
Journal of Gastrointestinal Surgery

Abstract

Background

Biological imaging by positron emission tomography (PET) using 18F-2-fluoro-2-deoxy-d-glucose (FDG) has been widely used clinically for the detection of primary tumors and for early prediction of response to chemotherapy. In this study, we examined the molecular mechanism underlying the detection of colorectal cancers by FDG-PET.

Material and Methods

In all, 37 patients with colorectal cancer were examined with FDG-PET, and the maximal standardized uptake value (SUV) was calculated. Using surgical tissue samples, we examined the expression levels of hypoxia-inducible factor alpha (HIF1α), a marker of tissue hypoxia; proliferative cellular nuclear antigen (PCNA), a marker of proliferation; and glucose transporter (GLUT)1 and hexokinase (HK)2, protein of glucose uptake by using reverse transcriptase-polymerase chain reaction.

Results

All except two colorectal cancer lesions showed increased uptake of FDG. The mean SUV of FDG-PET was 12.0 ± 1.2 (±SEM). The mean mRNA expression levels of GLUT1 and HK2 were significantly higher in cancer tissues than in the surrounding normal mucosa. Moreover, to promote the upregulation of glucose uptake, the expressions of HIF1α and PCNA were induced to 2.6 and 3.3 times higher than that in the normal mucosa. However, the quantitative correlation analysis showed SUV was correlated with HIF1α expression but not with PCNA expression.

Conclusion

Our molecular-based analysis suggested that FDG accumulation due to induction of glucose uptake proteins might be associated with the hypoxic environment in tumors rather than the tumor growth. Therefore, for assessing the efficacy of chemotherapy using FDG-PET, we must keep in mind that SUV does not indicate the tumor growth directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Haberkorn U, Bellemann ME, Altmann A, et al. PET 2-fluoro-2-deoxyglucose uptake in rat prostate adenocarcinoma during chemotherapy with gemcitabine. J Nucl Med 1997; 38: 1215–21.

    PubMed  CAS  Google Scholar 

  2. Aung W, Hasegawa S, Koshikawa-Yano M, et al. Noninvasive assessment of regulable transferred-p53 gene expression and evaluation of therapeutic response with FDG-PET in tumor model. Gene Ther 2010; 17: 1142–51.

    Article  PubMed  CAS  Google Scholar 

  3. Janssen MH, Ollers MC, van Stiphout RG, et al. Evaluation of early metabolic responses in rectal cancer during combined radiochemotherapy or radiotherapy alone: sequential FDG-PET-CT findings. Radiother Oncol 2010; 94: 151–5.

    Article  PubMed  Google Scholar 

  4. Lin WY, Tsai SC, Hung GU. Value of delayed 18F-FDG-PET imaging in the detection of hepatocellular carcinoma. Nucl Med Commun 2005; 26: 315–21.

    Article  PubMed  Google Scholar 

  5. Brandi G, Nannini M, Pantaleo MA, et al. Molecular imaging suggests efficacy of bevacizumab beyond the second line in advanced colorectal cancer patients. Chemotherapy 2008; 54: 421–4.

    Article  PubMed  CAS  Google Scholar 

  6. Adler LP, Blair HF, Makley JT, et al. Noninvasive grading of musculoskeletal tumors using PET. J Nucl Med 1991; 32: 1508–12

    PubMed  CAS  Google Scholar 

  7. Avril N. GLUT1 expression in tissue and (18)F-FDG uptake. J Nucl Med 2004; 45: 930–32

    PubMed  CAS  Google Scholar 

  8. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009; 324: 1029–33

    Article  PubMed  CAS  Google Scholar 

  9. Baserga R. Growth regulation of the PCNA gene. J Cell Sci 1991; 98: 433–6.

    PubMed  CAS  Google Scholar 

  10. Hong SS, Lee H, Kim KW. HIF-1alpha: a valid therapeutic target for tumor therapy. Cancer Res Treat 2004; 36: 343–53.

    Article  PubMed  Google Scholar 

  11. Paudyal B, Oriuchi N, Paudyal P, et al. Clinicopathological presentation of varying 18F-FDG uptake and expression of glucose transporter 1 and hexokinase II in cases of hepatocellular carcinoma and cholangiocellular carcinoma. Ann Nucl Med 2008; 22: 83–6.

    Article  PubMed  Google Scholar 

  12. Khan MA, Combs CS, Brunt EM, et al. Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol 2000; 32: 792–7.

    Article  PubMed  CAS  Google Scholar 

  13. Miyakubo M, Oriuchi N, Tsushima Y, et al. Diagnosis of maxillofacial tumor with l-3-[18F]-fl uoro-alpha-methyltyrosine (FMT) PET: a comparative study with FDG-PET. Ann Nucl Med 2007; 21: 129–35.

    Article  PubMed  CAS  Google Scholar 

  14. Goel A, Mathupala SP, Pedersen PL. Glucose metabolism in cancer: evidence that demethylation events play a role in activating type II hexokinase gene expression. J Biol Chem 2003; 278: 15333–40.

    Article  PubMed  CAS  Google Scholar 

  15. Younes M, Lechago LV, Somoano JR, et al. Wide expression of the human erythrocyte glucose transporter Glut1 in human cancers. Cancer Res 1996; 56: 1164–7.

    PubMed  CAS  Google Scholar 

  16. Gu J, Yamamoto H, Fukunaga H, et al. Correlation of GLUT-1 overexpression, tumor size, and depth of invasion with 18F-2-fluoro-2-deoxy-d-glucose uptake by positron emission tomography in colorectal cancer. Dig Dis Sci 2006; 51: 2198–205.

    Article  PubMed  CAS  Google Scholar 

  17. Lee JD, Yang WI, Park YN, et al. Different glucose uptake and glycolytic mechanisms between hepatocellular carcinoma and intrahepatic mass-forming cholangiocarcinoma with increased (18)F-FDG uptake. J Nucl Med 2005; 46: 1753–9.

    PubMed  CAS  Google Scholar 

  18. Yu Kuang, Schomisch SJ, Chandramouli V, Lee Z. Hexokinase and glucose-6-phosphatase activity in woodchuck model of hepatitis virus-induced hepatocellular carcinoma. Comp Biochem Physiol C Toxicol Pharmacol 2006; 143: 225–31.

    Article  Google Scholar 

  19. de Geus-Oei LF, van Laarhoven HW, Visser EP, et al. Chemotherapy response evaluation with FDG-PET in patients with colorectal cancer. Ann Oncol 2008; 19: 348–52.

    Article  PubMed  Google Scholar 

  20. Dimitrakopoulou-Strauss A, Strauss LG, et al. Prognostic aspects of 18F-FDG PET kinetics in patients with metastatic colorectal carcinoma receiving FOLFOX chemotherapy. J Nucl Med 2004; 45: 1480–7.

    PubMed  CAS  Google Scholar 

  21. Findlay M, Young H, Cunningham D, et al. Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol 1996; 14: 700–8.

    PubMed  CAS  Google Scholar 

  22. Byström P, Berglund A, Garske U, et al. Early prediction of response to first-line chemotherapy by sequential [18F]-2-fluoro-2-deoxy-d-glucose positron emission tomography in patients with advanced colorectal cancer. Ann Oncol 2009; 20: 1057–61.

    Article  PubMed  Google Scholar 

  23. Izuishi K, Yamamoto Y, Sano T, et al. Impact of 18-fluorodeoxyglucose positron emission tomography on the management of pancreatic cancer. J Gastrointest Surg 2010; 14: 1151–8.

    Article  PubMed  Google Scholar 

  24. Ikenaga N, Otomo N, Toyofuku A, et al. Standardized uptake values for breast carcinomas assessed by fluorodeoxyglucose-positron emission tomography correlate with prognostic factors. Am Surg 2007; 73: 1151–7

    PubMed  Google Scholar 

  25. Heudel P, Cimarelli S, Montella A, et al. Value of PET-FDG in primary breast cancer based on histopathological and immunohistochemical prognostic factors. Int J Clin Oncol 2010;15:588–93.

    Article  PubMed  Google Scholar 

  26. Westerterp M, Sloof GW, Hoekstra OS, et al. 18FDG uptake in oesophageal adenocarcinoma: linking biology and outcome. J Cancer Res Clin Oncol 2008; 134: 227–36.

    Article  PubMed  Google Scholar 

  27. Warburg O (1930). The metabolism of tumours. London, England: Constable.

    Google Scholar 

  28. Robey IF, Stephen RM, Brown KS, et al. Regulation of the Warburg effect in early-passage breast cancer cells. Neoplasia 2008; 10: 745–56.

    PubMed  CAS  Google Scholar 

  29. Kim JW, Dang CV. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 2006; 66: 8927–30.

    Article  PubMed  CAS  Google Scholar 

  30. Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci 1999; 24: 68–72.

    Article  PubMed  CAS  Google Scholar 

  31. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004; 4: 891–9.

    Article  PubMed  CAS  Google Scholar 

  32. Bartrons R, Caro J. Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenerg Biomembr 2007; 39: 223–9.

    Article  PubMed  CAS  Google Scholar 

  33. Schofield CJ, Ratcliffe PJ: Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 2004; 5: 343–54.

    Article  PubMed  CAS  Google Scholar 

  34. Yen TC, See LC, Lai CH, et al. 18F-FDG uptake in squamous cell carcinoma of the cervix is correlated with glucose transporter 1 expression. J Nucl Med 2004; 45: 22–9

    PubMed  CAS  Google Scholar 

  35. Kato H, Takita J, Miyazaki T, et al. Correlation of 18-F-fluorodeoxyglucose (FDG) accumulation with glucose transporter (Glut-1) expression in esophageal squamous cell carcinoma. Anticancer Res 2003; 23: 3263–72

    PubMed  CAS  Google Scholar 

  36. Torizuka T, Tamaki N, Inokuma T, et al. In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET. J Nucl Med 1995; 36: 1811–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiko Izuishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izuishi, K., Yamamoto, Y., Sano, T. et al. Molecular Mechanism Underlying the Detection of Colorectal Cancer by 18F-2-Fluoro-2-Deoxy-d-Glucose Positron Emission Tomography. J Gastrointest Surg 16, 394–400 (2012). https://doi.org/10.1007/s11605-011-1727-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-011-1727-z

Keywords

Navigation