Log in

Valsartan inhibits angiotensin II-induced proliferation of vascular smooth muscle cells via regulating the expression of mitofusin 2

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Angiotensin II (ANGII) plays an important role in the pathogenesis of atherosclerosis by inducing proliferation of vascular smooth muscle cells (VSMCs). In our study, we observed the effects of valsartan on proliferation of cultured VSMCs treated with or without ANGII by cell counting and methyl thiazolyl tetrazolium (MTT) assay, and detected the expression of mitofusin 2 (Mfn2), a newly discovered cell proliferation inhibitor and a related cell proliferation signaling pathway protein by Western blotting. ANGII at a concentration of 10−6 mol/L significantly stimulated VSMCs proliferation, down-regulated the expression of Mfn2 and up-regulated the expression of Raf and ERK1/2. Valsartan inhibited such effects of ANGII at concentrations of 10−5 and 10−6 mol/L, but not at 10−7 mol/L. Valsartan had no significant effect on the proliferation of untreated VSMCs. These results suggest that valsartan inhibits ANGII-induced proliferation of VSMCs in vitro via Mfn2-Ras-Raf-ERK/MAPK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braun-Dullaeus RC, Mann MJ, Dzau VJ. Cell cycle progression: new therapeutic target for vascular proliferative disease. Circulation, 1998,98(1):82–89

    PubMed  CAS  Google Scholar 

  2. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation, 2011, 123(4): e18–e209

    Article  PubMed  Google Scholar 

  3. Ross R. Atherosclerosis is an inflammatory disease. Am Heart J, 1999,138(5 Pt 2):S419–S420

    Article  PubMed  CAS  Google Scholar 

  4. Dzau VJ, Braun-Dullaeus RC, Sedding DG. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med, 2002,8(11):1249–1256

    Article  PubMed  CAS  Google Scholar 

  5. Andrés V, Castro C. Antiproliferative strategies for the treatment of vascular proliferative disease. Curr Vasc Pharmacol, 2003,1(1):85–98

    Article  PubMed  Google Scholar 

  6. Charron T, Nili N, Strauss BH. The cell cycle: a critical therapeutic target to prevent vascular proliferative disease. Can J Cardiol, 2006,22(Suppl B):41B–55B

    Article  PubMed  Google Scholar 

  7. Brasier AR, Recinos A 3rd, Eledrisi MS. Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol, 2002,22(8):1257–1266

    Article  PubMed  CAS  Google Scholar 

  8. Vaughan DE. Angiotensin and vascular fibrinolytic balance. Am J Hypertens, 2002,15(1 Pt 2):3S–8S

    Article  PubMed  CAS  Google Scholar 

  9. Chen KH, Guo X, Ma D, et al. Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol, 2004,6(9):872–883

    Article  PubMed  CAS  Google Scholar 

  10. Eguchi S, Matsumoto T, Motley ED, et al. Identification of an essential signaling cascade for mitogen-activated protein kinase activation by angiotensin II in cultured rat vascular smooth muscle cells. Possible requirement of Gq-mediated p21ras activation coupled to a Ca2+/calmodulin-sensitive tyrosine kinase. J Biol Chem, 1996, 271(24):14 169–14 175

    CAS  Google Scholar 

  11. Chen KH, Wang F, Zhang J, et al. Cloning and expression of a novel partial cDNA related to hypertension. Chin Med J (Engl), 1998,111(4):383–384

    CAS  Google Scholar 

  12. Bach D, Pich S, Soriano FX, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem, 2003,278(19):17 190–17 197

    Article  CAS  Google Scholar 

  13. Guo XM, Chen KH, Guo YH, et al. Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ Res, 2007,101(11):1113–1122

    Article  PubMed  CAS  Google Scholar 

  14. Black HR, Bailey J, Zappe D, et al. Valsartan: more than a decade of experience. Drugs, 2009,69(17):2393–2414

    Article  PubMed  CAS  Google Scholar 

  15. Mueck AO, Seeger H, Lippert TH. Valsartan inhibits angiotensin II-stimulated proliferation of smooth muscle cells from human coronary artery. Int J Clin Pharmacol Ther, 1999,37(7):365–366

    PubMed  CAS  Google Scholar 

  16. Kohno M, Ohmori K, Nozaki S, et al. Effects of valsartan on angiotensin II-induced migration of human coronary artery smooth muscle cells. Hypertens Res, 2000, 23(6):677–681

    Article  PubMed  CAS  Google Scholar 

  17. Chien KR, Hoshijima M. Unravelling Ras signals in cardiovascular disease. Nat Cell Biol, 2004, 6(9):807–808.

    Article  PubMed  CAS  Google Scholar 

  18. Wu L, Li Z, Zhang Y, et al. Adenovirus-expressed human hyperplasia suppressor gene induces apoptosis in cancer cells. Mol Cancer Ther, 2008,7(1):222–232

    Article  PubMed  CAS  Google Scholar 

  19. Zhou W, Chen KH, Cao W, et al. Mutation of the protein kinase A phosphorylation site influences the anti-prolifera tive activity of mitofusin 2. Atherosclerosis, 2010,211(1): 216–223

    Article  PubMed  CAS  Google Scholar 

  20. Bokemeyer D, Lindemann M, Kramer HJ. Regulation of mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle cells. Hypertension, 1998,32(4):661–667

    PubMed  CAS  Google Scholar 

  21. Keenan SM, Bellone C, Baldassare JJ. Cyclin-dependent kinase 2 nucleocytoplasmic translocation is regulated by extracellular regulated kinase. J Biol Chem, 2001,276(25): 22 404–22 409

    Article  CAS  Google Scholar 

  22. Touyz RM, Schiffrin EL. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev, 2000,52(4):639–672

    PubMed  CAS  Google Scholar 

  23. Ohtsu H, Suzuki H, Nakashima H, et al. Angiotensin II signal transduction through small GTP-binding proteins: mechanism and significance in vascular smooth muscle cells. Hypertension, 2006,48(4):534–540

    Article  PubMed  CAS  Google Scholar 

  24. Eguchi S, Numaguchi K, Iwasaki H, et al. Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J Biol Chem, 1998,273(15):8890–8896

    Article  PubMed  CAS  Google Scholar 

  25. Feng TC, Ying WY, Hua RJ, et al. Effect of valsartan and captopril in rabbit carotid injury. Possible involvement of bradykinin in the antiproliferative action of the renin-angiotensin blockade. J Renin Angiotensin Aldosterone Syst, 2001,2(1):19–24

    Article  PubMed  CAS  Google Scholar 

  26. Yamamoto T, Sata M, Fukuda D, et al. The angiotensin II type 1 receptor blocker valsartan attenuates graft vasculopathy. Basic Res Cardiol, 2005,100(1):84–91

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aomei Guo  (郭小梅).

Additional information

This study was supported by grants from the National Natural Science Foundation of China (No. 30872714 and No. 30971244).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, H., Gong, J., Zhang, W. et al. Valsartan inhibits angiotensin II-induced proliferation of vascular smooth muscle cells via regulating the expression of mitofusin 2. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 32, 31–35 (2012). https://doi.org/10.1007/s11596-012-0005-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-012-0005-y

Key words

Navigation