Log in

Synthesis of polyaniline-Fe3O4 nanocomposites and their conductivity and magnetic properties

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

By using inorganic Fe3O4 nanoparticles of different content as nucleation sites, PAn-Fe3O4 nanorods were successfully synthesized through a simple, conventional, and inexpensive one-step in-situ polymerization method. The TEM images revealed the size and morphology of the resultant nanocomposite. The EDS pattern confirmed the existence of Fe3O4 in the composite. The FT-IR spectral analysis confirmed the formation of PAn encapsulated Fe3O4 nanocomposite. With the content of Fe3O4 increasing, the conductivity of the nanocomposites gradually decreases, meanwhile, the saturation magnetization increases and reveals a super paramagnetic behavior. With controllable electrical, magnetic, and electromagnetic properties, the well-prepared nanocomposites may have the potential applications in chemical sensors, catalysis, microwave absorbing, and electro-magneto-rheological fluids, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S Miyauchi, H Abiko, Y Sorimachi, et al. Preparation of Barium Titanate-polypyrrole Compositions and Their Electrical Properties[J]. J. Appl. Polym. Sci., 1989, 37: 289–293

    Article  CAS  Google Scholar 

  2. J G Guan, W Wang, R Z Gong, et al. One-Step Synthesis of Cobalt-Phthalocyanine/Iron Nanocomposite Particles with High Magnetic Susceptibility[J]. Langmuir, 2002, 18: 4 198–4 204

    CAS  Google Scholar 

  3. H S Kim, B H Sohn, W Lee, et al. Multifunctional Layer-by-layer Self-assembly of Conducting Polymers and Magnetic Nanoparticles[J]. Thin Solid Film, 2002, 419: 173–177

    Article  CAS  ADS  Google Scholar 

  4. P Anilkumar, M Jayakannan. New Renewable Resource Amphiphilic Molecular Design for Size-Controlled and Highly Ordered Polyaniline Nanofibers[J]. Langmuir, 2006, 22: 5 952–5 957

    Article  CAS  Google Scholar 

  5. X Lu, H Mao, D Chao, et al. Ultrasonic Synthesis of Polyaniline Nanotubes Containing Fe3O4 Nanoparticles[J]. J. Solid State Chem., 2006, 179: 2 609–2 615

    CAS  Google Scholar 

  6. C T Chen, Y C Chen. Fe3O4/TiO2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry[J]. Anal. Chem., 2005, 77: 5 912–5 219

    CAS  Google Scholar 

  7. JCPDS Powder Diffraction File. International Center for Diffraction Data[DB]. Newtown Square, PA, 1980

  8. D O Smith. Magnetization of a Magnetite Single Crystal Near the Curie Point[J]. Phys. Rev., 1956, 102: 959–963

    Article  CAS  ADS  Google Scholar 

  9. B M Altura, A Gebrewold, A Zhang, et al. Preparation of Nanocrystalline Fe3O4 by γ-ray Radiation[J]. Mater. Lett., 1997, 33: 113–116

    Article  Google Scholar 

  10. Yavuz, M K Ram, M Aldissi, et al. Synthesis and the Physical Properties of MnZn Ferrite and NiMnZn Ferrite-polyaniline Nanocomposite Particles[J]. J. Mater. Chem., 2005, 15: 810–817

    Article  CAS  Google Scholar 

  11. W Luzny, E Banka. Relations Between the Structure and Electric Conductivity of Polyaniline Protonated with Camphorsulfonic Acid[J]. Macromolecules, 2000, 33: 425–429

    Article  CAS  ADS  Google Scholar 

  12. Y **a, J M Wiesinger, A G Macdiarmid. Camphorsulfonic Acid Fully Doped Polyaniline Emeraldine Salt: Conformations in Different Solvents Studied by an Ultraviolet/visible/near-infrared Spectroscopic Method[J]. Chem. Mater., 1995, 7: 443–445

    Article  CAS  Google Scholar 

  13. A B Diaz, N D S Mohallem, R D Sinisterra. Preparation of a Ferrofluid Using Cyclodextrin and Magnetite[J]. J. Magn. Magn. Mater. R., 2004, 272: 2 395–2 397

    Google Scholar 

  14. A G MacDiamid, J C Chiang, M Halpern, et al. “Polyaniline”: Interconversion of Metallic and Insulating Forms[J]. Cryst. Liq. Cryst., 1985, 121: 173–180

    Article  Google Scholar 

  15. S Wei, Y Zhu, Y Zhang, et al. Preparation and Characterization of Hyperbranched Aromatic Polyamides/Fe3O4 Magnetic Nanocomposite[J]. React. Funct. Polym., 2006, 66: 1 272–1 277

    CAS  Google Scholar 

  16. A Bocanegra, N D S Mohallem, R D Sinisterra. Complex Material Using Beta-Cyclodextrins and Nickel-zinc Ferrite to Obtain a Magnetically Targetable Drug Carrier[J]. Mater. Res. Soc. Symp. Proc., 2002, 711: 30–35

    Google Scholar 

  17. H Q **e, J G Guan, J S Guo. Three Ways to Improve Electroheological Properties of Polyaniline-based Suspensions[J]. J. Appl. Poly. Sci., 1997, 64: 1 641–1 647

    CAS  Google Scholar 

  18. N Z Kazantseva, J Vilcakova, V Kresalek, et al. Magnetic Behaviour of Composites Containing Polyaniline-coated Manganese-zinc Ferrite[J]. J. Magn. Magn.Mater., 2004, 269: 30–37

    Article  CAS  ADS  Google Scholar 

  19. B Tang, Y Geng, Q Sun, et al. Processible Nanomaterials with High Conductivity and Magnetizability. Preparation and Properties of Maghemite/polyaniline Nanocomposite Films[J]. Pure Appl. Chem., 2000, 72: 157–162

    Article  CAS  Google Scholar 

  20. J Deng, C He, Y Peng, et al. Magnetic and Conductive Fe3O4-polyaniline Nanoparticles with Core-shell Structure[ J]. Synth. Met., 2003, 139: 295–301

    Article  CAS  Google Scholar 

  21. D Y Godovsky. Device Applications of Polymer-Nanocomposites[J]. Adv. Polym. Sci., 2000, 153: 163–205

    Article  CAS  Google Scholar 

  22. G Bidan, O Jarjayes, Fruchart J M. New Nanocomposites Based on Tailor Dressed Magnetic Particles in a Polypyrrole Matrix[J]. Adv. Mater., 1994, 6: 152–155

    Article  CAS  Google Scholar 

  23. M Kryszewski, J K Jeszka. Nanostructured Conducting Polymer Composites-superparamagnetic Particles in Conducting Polymers[J]. Synth. Met., 1998, 94: 99–104

    Article  CAS  Google Scholar 

  24. I Sapurina, A Y Osadchev, B Z Volchek. In-situ Polymerized Polyaniline Films: Brush-like Chain Ordering[J]. Synth. Met., 2002, 129: 29–37

    Article  CAS  Google Scholar 

  25. M Fahlman, S Jasty, A J Epstein. Corrosion Protection of Iron/steel by Emeraldine Base Polyaniline: an X-ray Photoelectron Spectroscopy Study[J]. Synth. Met., 1997, 85: 1 323–1 326

    Article  CAS  Google Scholar 

  26. X D Chen, X M He. The Effect of the Recess Shape on Performance Analysis of the Gas-lubricated Bearing in Optical Lithography[J]. Tribology International, 2006, 39(11): 1 336–1 341

    Article  Google Scholar 

  27. He X M, Chen X D. The Dynamic Analysis of the Gas Lubracated Stage in Optical Lithography[J]. International Journal of Advanced Manufacturing Technology, 2007, 32(9–10): 978–984

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjiang Leng  (冷春江).

Additional information

Funded by National Natural Science Foundation of China(No.10974148), Sub-project of State Key Development Program of Basic Research of China(Nos. 2009CB939704 and 2009CB939705

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leng, C., Wei, J., Liu, Z. et al. Synthesis of polyaniline-Fe3O4 nanocomposites and their conductivity and magnetic properties. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 25, 760–764 (2010). https://doi.org/10.1007/s11595-010-0087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-010-0087-y

Key words

Navigation