Log in

A note on the forward-Douglas–Rachford splitting for monotone inclusion and convex optimization

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We shed light on the structure of the “three-operator” version of the forward-Douglas–Rachford splitting algorithm for finding a zero of a sum of maximally monotone operators \(A + B + C\), where B is cocoercive, involving only the computation of B and of the resolvent of A and of C, separately. We show that it is a straightforward extension of a fixed-point algorithm proposed by us as a generalization of the forward–backward splitting algorithm, initially designed for finding a zero of a sum of an arbitrary number of maximally monotone operators \(\sum _{i=1}^n A_i + B\), where B is cocoercive, involving only the computation of B and of the resolvent of each \(A_i\) separately. We argue that, the former is the “true” forward-Douglas–Rachford splitting algorithm, in contrast to the initial use of this designation in the literature. Then, we highlight the extension to an arbitrary number of maximally monotone operators in the splitting, \(\sum _{i=1}^{n} A_i + B + C\), in a formulation admitting preconditioning operators. We finally demonstate experimentally its interest in the context of nonsmooth convex optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://github.com/1a7r0ch3/CP_PFDR_graph_d1.

  2. Note that we use here both standard notations: when N is an integer, \(\mathbb {R}^N\) is the Cartesian product of N copies of the set \(\mathbb {R}\); when E is a finite set, \(\mathbb {R}^E\) is the set of all applications from E to \(\mathbb {R}\), isomorphic to \(\mathbb {R}^{|E|}\).

References

  1. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  2. Becker, H., Albera, L., Comon, P., Gribonval, R., Merlet, I.: Fast, variation-based methods for the analysis of extended brain sources. In: European Signal Processing Conference (2014)

  3. Brice no-Arias, L.M.: Forward-Douglas–Rachford splitting and forward-partial inverse method for solving monotone inclusions. Optimization 64(5), 1239–1261 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cevher, V., Vu, C.B., Yurtsever, A.: Stochastic forward-Douglas-Rachford splitting for monotone inclusions. Technical Report, EPFL (2016)

  5. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6), 475–504 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Combettes, P.L., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum monotone operators. Set Valued Var. Anal. 20(2), 307–330 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Condat, L.: A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davis, D., Yin, W.: A three-operator splitting scheme and its optimization applications. Set Valued Var. Anal. 25(4), 829–858 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Demantké, J., Mallet, C., David, N., Vallet, B.: Dimensionality based scale selection in 3D LIDAR point clouds. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-5/W12, pp. 97–102 (2011)

  11. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(3), 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gramfort, A., Thirion, B., Varoquaux, G.: Identifying predictive regions from fMRI with TV-\(\ell _1\) prior. In: Pattern Recognition in Neuroimaging, IEEE (2013)

  13. Guinard, S., Landrieu, L.: Weakly supervised segmentation-aided classification of urban scenes from 3D LiDAR point clouds. In: ISPRS Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-1/W1, pp. 151–157 (2017)

  14. Landrieu, L., Raguet, H., Vallet, B., Mallet, C., Weinmann, M.: A structured regularization framework for spatially smoothing semantic labelings of 3D point clouds. J. Photogramm. Remote Sens. 132, 102–118 (2017)

    Article  Google Scholar 

  15. Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: IEEE International Conference on Computer Vision, pp. 1762–1769. IEEE (2011)

  18. Raguet, H., Fadili, J., Peyré, G.: A generalized forward–backward splitting. SIAM J. Imaging Sci. 6(3), 1199–1226 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Raguet, H.: A Signal Processing Approach to Voltage-Sensitive Dye Optical Imaging. Ph.D. thesis, Université Paris-Dauphine, Paris (2014)

  20. Raguet, H., Landrieu, L.: Preconditioning of a generalized forward-backward splitting and application to optimization on graphs. SIAM J. Imaging Sci. 8(4), 2706–2739 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. S**arn, J.E.: Partial inverse of a monotone operator. Appl. Math. Optim. 10(1), 247–265 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vu, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38(3), 667–681 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Weinmann, M., Jutzi, B., Hinz, S., Mallet, C.: Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS 105, 286–304 (2015)

    Article  Google Scholar 

  24. Zou, H., Hastie, T., Tibshirani, R.: On the “degrees of freedom” of the LASSO. Ann. Stat. 35(5), 2173–2192 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Raguet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raguet, H. A note on the forward-Douglas–Rachford splitting for monotone inclusion and convex optimization. Optim Lett 13, 717–740 (2019). https://doi.org/10.1007/s11590-018-1272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1272-8

Keywords

Navigation