Log in

Research on thermal runaway characteristics of NCM lithium-ion battery under thermal-electrical coupling abuse

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This paper takes NCM lithium-ion power battery as the research object. The internal reaction mechanism and heat generation are considered when the lithium-ion battery occurs thermal runaway (TR). The lithium-ion battery TR model under thermal-electrical coupling abuse is established by using temperature as the coupling factor. By comparing the heat source position, charging rate, and discharging rate of the lithium-ion battery, the effects of different working conditions on the internal parameters and TR characteristics are analyzed. The results show that the greater the charging rate, the higher the peak temperature of the TR; the TR trend of normal charging and overcharging is basically the same, but the overcharging voltage will continue to rise and exceed the rated voltage; different heat abuse positions have little effect on the overall temperature distribution. The above conclusions can provide theoretical basis for early warning and prevention of lithium-ion battery TR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. He XM, Feng XN, Ouyang MG (2016) Safety of Li-ion power battery system for vehicles[J]. Sci Technol Rev 34(6):32–38

    Google Scholar 

  2. Deng Y. (2021) Agglomeration of technology innovation network of new energy automobile industry based on IoT and artificial intelligence[J]. Journal of Ambient Intelligence and Humanized Computing, 1–17.

  3. Feng X N, Ouyang M G, Liu X, et al. (2017) Thermal runaway mechanism of lithium ion battery for electric vehicles: a review[J]. Energy Storage Materials, S2405829716303464.

  4. Richard MN, Dahn JR (1999) Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental [J]. J Electrochemical Soc 146(6):2068–2077

    Article  CAS  Google Scholar 

  5. Maleki H, Deng G, Anani A et al (1999) Thermal stability studies of Li-ion cells and components [J]. J Electrochem Soc 146(9):3224–3229

    Article  CAS  Google Scholar 

  6. Ryou MH, Lee JN, Lee DJ et al (2012) Effects of lithium salts on thermal stabilities of lithium alkyl carbonates in SEI layer [J]. Electrochim Acta 83:259–263

    Article  CAS  Google Scholar 

  7. Zhang Z, Fouchard D, Rea JR (1998) Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells [J]. J Power Sources 70(1):16–20

    Article  CAS  Google Scholar 

  8. C Lampe-Onnerud, Jie Shi, R Chamberlain, et al. (2001) Safety studies of Li-ion key components by ARC[C]// Conference on Applications & Advances. IEEE.

  9. Yuan ZZ, Zhou ZT, Li WS (2002) The influence of electrolyte composition on the performance of SEI film of carbon anode in lithium ion battery[J]. Batteries 032(006):354–357

    CAS  Google Scholar 

  10. Chen YH, Tang ZY, He YB et al (2006) Analysis of explosion mechanism of lithium ion batteries[J]. Electrochemistry 12(3):266–269

    CAS  Google Scholar 

  11. Wang Y, Jiang J, Dahn JR (2007) The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.8Co0.15Al0.05)O2 or LiCoO2 with non-aqueous electrolyte[J]. Electrochem Commun. 9:2534–2540

    Article  CAS  Google Scholar 

  12. Kim H, Kong M, Kim K et al (2007) Effect of carbon coating on Li(Ni1/3Mn1/3Co1/3)O2 cathode material for lithium secondary batteries [J]. J Power Sources 171:917–921

    Article  CAS  Google Scholar 

  13. Lu Z, Macneil DD, Dahn JR (2001) Layered Li[NixCo1-2xMnx]O2 cathode materials for lithium-ion batteries [J]. Electrochem Solid State Lett 12(4):200–203

    Article  Google Scholar 

  14. Jiang J, Eberman KW, Krause LJ et al (2005) Reactivity of Liy[NixCo12xMnx]O2, (x=0.1, 0.2, 0.35, 0.45 and 0.5; y=0.3, 0.5) with non-aqueous solvents and electrolytes studied by ARC [J]. J Electrochem Soc 152(3):566–569

    Article  Google Scholar 

  15. Wen J, Yu Y, Chen C (2012) A review on lithium-ion batteries safety issues: existing problems and possible solutions [J]. Mater Express 2(3):197–212

    Article  CAS  Google Scholar 

  16. Vijayaraghavan V, Garg A, Liang G. (2017) Fracture mechanics modelling of lithium-ion batteries under pinch torsion test[J]. Measurement. 114.

  17. Sahraei E, Bosco E, Dixon B et al (2016) Microscale failure mechanisms leading to internal short circuit in Li-ion batteries under complex loading scenarios[J]. J Power Sources 319:56–65

    Article  CAS  Google Scholar 

  18. Wang M, Shi Y, Noelle DJ et al (2017) Effect of groove width of modified current collector on internal short circuit of abused lithium-ion battery[J]. J Phys D Appl Phys 50(42):425503

    Article  Google Scholar 

  19. Wang M, Noelle DJ, Shi Y et al (2018) Effect of notch depth of modified current collector on internal-short-circuit mitigation for lithium-ion battery[J]. J Phys D Appl Phys 51(1):015502

    Article  Google Scholar 

  20. Sheikh M, Elmarakbi A, Elkady M (2017) Thermal runaway detection of cylindrical 18650 lithium-ion battery under quasi-static loading conditions[J]. J Power Sources 370:61–70

    Article  CAS  Google Scholar 

  21. Zhang MX, Feng XN, Ouyang MG et al (2015) Experiment and modeling of acupuncture thermal runaway of NCM lithium-ion power battery[J]. Automot Eng 7:743–750

    Google Scholar 

  22. Feng XN, Lu LG, Ouyang MG et al (2016) A 3D thermal runaway propagation model for a large format lithium ion battery module[J]. Energy 115(1):194–208

    Article  CAS  Google Scholar 

  23. Spotnitz R, Franklin J (2003) Abuse behavior of high-power, lithium-ion cells [J]. Power Sour 113(1):81–100

    Article  CAS  Google Scholar 

  24. Larsson F, Mellander BE (2014) Abuse by external heating, overcharge and short circuiting of commercial lithium-ion battery cells[J]. J Electrochem Soc 161(10):A1611–A1617

    Article  CAS  Google Scholar 

  25. Conte FV, Gollob P, Lacher H (2009) Safety in the battery design: the short circuit[J]. World Electric Veh J 3:1–8

    Google Scholar 

  26. Zhao R, Liu J, Gu J (2016) Simulation and experimental study on lithium ion battery short circuit[J]. Appl Energy 173:29–39

    Article  CAS  Google Scholar 

  27. Erol S, Orazem ME, Muller RP (2014) Influence of overcharge and over-discharge on the impedance response of LiCoO2|C batteries[J]. J Power Sour 270(15):92–100

    Article  CAS  Google Scholar 

  28. Leising RA, Palazzo MJ, Takeuchi ES et al (2001) Abuse testing of lithium-ion batteries: Characterization of the overcharge reaction of LiCoO2/graphite cells[J]. J Electrochem Soc 148(8):A838–A844

    Article  CAS  Google Scholar 

  29. ** P, Wang QS, Huang PF et al (2015) Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test[J]. J Power Sour 285:80–89

    Article  CAS  Google Scholar 

  30. Taheri P, Hsieh S, Bahrami M (2011) Investigating electrical contact resistance losses in lithium-ion battery assemblies for hybrid and electric vehicles[J]. J Power Sour 196(15):6525–6533

    Article  CAS  Google Scholar 

  31. Tong W, Somasundaram K, Birgersson E et al (2015) Numerical investigation of water cooling for a lithium-ion bipolar battery pack [J]. Int J Therm Sci 94:259–269

    Article  CAS  Google Scholar 

  32. Han B, Liu F, Li M et al (2021) Research on electric vehicle thermal management system with coupled temperature regulation between crew cabin and power battery pack[J]. Proc Inst Mech Eng Part D J Automob Eng 235(10–11):095440702199658

    Google Scholar 

  33. Newman BernardiPawlikowski (1985) A general energy-balance for battery systems[J]. J electrochem Soc 132(1):5–12

    Article  Google Scholar 

  34. A Ríos-Alborés, J Rodríguez. (2019) Single particle models for the numerical simulation of lithium-ion cells[M]. Advances on Links Between Mathematics and Industry. 91.

Download references

Funding

This work was supported by Foundation of State Key Laboratory of Automotive Simulation and Control (20180103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoming Xu.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Sun, X., Zhao, L. et al. Research on thermal runaway characteristics of NCM lithium-ion battery under thermal-electrical coupling abuse. Ionics 28, 5449–5467 (2022). https://doi.org/10.1007/s11581-022-04730-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04730-0

Keywords

Navigation