Log in

Investigation of La0.75Sr0.25Cr0.5Mn0.5O3-δ–Ag composite anodes for solid oxide fuel cells obtained via a low-temperature sintering process

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) anodes incorporated with Ag paste (AP) sintered at a relatively low temperature of 900 °C were evaluated. The results of electrochemical impedance spectroscopy displayed that the optimal electrochemical performance was acquired by incorporating 40 wt% Ag paste into the LSCM matrix. The electrical conductivity of LSCM–40AP at 800 °C in air and H2 was 192 S cm−1 and 9.96 S cm−1, respectively. The maximum power density of the cell with LSCM–40AP at 800 °C exhibited a considerable increase by a factor of 1.6, when compared with the cell with pure LSCM. The durability of the single cell with the LSCM–40AP anode was analyzed. The result revealed that the cell voltage slightly reduced from 0.67 to 0.64 V at a constant current density of 0.25 A cm−2 after a 100 h test, indicating good long-term stability of the anode sintered at 900 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ding L, Wang L, Ding D, Zhang S, Ding X, Yuan G (2017) Promotion on electrochemical performance of a cation deficient SrCo0.7Nb0.1Fe0.2O3-δ perovskite cathode for intermediate-temperature solid oxide fuel cells. J Power Sources 354:26–33

    Article  CAS  Google Scholar 

  2. Lu Y, Gasper P, Pal UB, Gopalan S, Basu SN (2018) Improving intermediate temperature performance of Ni-YSZ cermet anodes for solid oxide fuel cells by liquid infiltration of nickel nanoparticles. J Power Sources 396:257–264

    Article  CAS  Google Scholar 

  3. Ge XM, Chan SH, Liu QL, Sun Q (2012) Solid oxide fuel cell anode materials for direct hydrocarbon utilization. Adv Energy Mater 2:1156–1181

    Article  CAS  Google Scholar 

  4. Li M, Hua B, Luo J, Jiang SP, Pu J, Chi B, Li J (2016) Enhancing sulfur tolerance of Ni-based cermet anodes of solid oxide fuel cells by ytterbium-doped barium cerate infiltration. ACS Appl Mater Interfaces 8:10293–10301

    Article  CAS  Google Scholar 

  5. Song B, Ruiz-Trejo E, Bertei A, Brandon NP (2018) Quantification of the degradation of Ni-YSZ anodes upon redox cycling. J Power Sources 374:61–68

    Article  CAS  Google Scholar 

  6. Kubota M, Okanishi T, Muroyama H, Matsui T, Eguchi K (2015) Microstructural evolution of Ni–YSZ cermet anode under thermal cycles with redox treatments. J Electrochem Soc 162:F380–F386

    Article  CAS  Google Scholar 

  7. Yang X, Liu J, Chen F, Du Y, Deibel A, He T (2018) Molybdenum-based double perovskites A2CrMoO6-δ (A = Ca, Sr, Ba) as anode materials for solid oxide fuel cells. Electrochim Acta 290:440–450

    Article  CAS  Google Scholar 

  8. Steil MC, Nobrega SD, Georges S, Gelin P, Uhlenbruck S, Fonseca FC (2017) Durable direct ethanol anode-supported solid oxide fuel cell. Appl Energy 199:180–186

    Article  CAS  Google Scholar 

  9. Rosa Silva E, Curi M, Furtado JG, Ferraz HC, Secchi AR (2019) The effect of calcination atmosphere on structural properties of Y-doped SrTiO3 perovskite anode for SOFC prepared by solid-state reaction. Ceram Int 45:9761–9770

    Article  CAS  Google Scholar 

  10. Li Y, Wang Z, Li J, Zhu X, Zhang Y, Huang X, Zhou Y, Zhu L, Lü Z (2017) Sulfur poisoning and attempt of oxidative regeneration of La0.75Sr0.25Cr0.5Mn0.5O3-δ anode for solid oxide fuel cell. J Alloy Compd 698:794–799

    Article  CAS  Google Scholar 

  11. Gupta S, Singh P (2016) Nickel and titanium doubly doped lanthanum strontium chromite for high temperature electrochemical devices. J Power Sources 306:801–811

    Article  CAS  Google Scholar 

  12. Tao S, Irvine JTS (2003) A redox-stable efficient anode for solid-oxide fuel cells. Nat Mater 2:320–323

    Article  CAS  Google Scholar 

  13. Tao S, Irvine JTS (2004) Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ, a redox-stable, efficient perovskite anode for SOFCs. J Electrochem Soc 151:A252–A259

    Article  CAS  Google Scholar 

  14. Song Y, Zhong Q, Tan W (2014) Synthesis and electrochemical behaviour of ceria-substitution LSCM as a possible symmetric solid oxide fuel cell electrode material exposed to H2 fuel containing H2S. Int J Hydrog Energy 39:13694–13700

    Article  CAS  Google Scholar 

  15. Kim G, Lee S, Shin JY, Corre G, Irvine JTS, Vohs JM, Gorte RJ (2009) Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM. Electrochem Solid-State Lett 12:B48–B52

    Article  CAS  Google Scholar 

  16. Lu XC, Zhu JH (2007) Cu(Pd)-impregnated La0.75Sr0.25Cr0.5Mn0.5O3-δ anodes for direct utilization of methane in SOFC. Solid State Ionics 178:1467–1475

    Article  CAS  Google Scholar 

  17. Yang J, Li Z, Yan D, Pu J, Chi B, Li J (2018) The investigation of Ag & LaCo0.6Ni0.4O3-δ composites as cathode contact material for intermediate temperature solid oxide fuel cells. Int J Hydrog Energy 43:12705–12712

    Article  CAS  Google Scholar 

  18. Lin Y, Su C, Huang C, Kim JS, Kwak C, Shao Z (2012) A new symmetric solid oxide fuel cell with a samaria-doped ceria framework and a silver-infiltrated electrocatalyst. J Power Sources 197:57–64

    Article  CAS  Google Scholar 

  19. Panuh D, Muchtar A, Muhamad N, Majlan EH, Daud WRW (2014) Fabrication of thin Ag–YSB composite cathode film for intermediate-temperature solid oxide fuel cells. Compos Part B Eng 58:193–198

    Article  CAS  Google Scholar 

  20. Li R, Ge L, He S, Chen H, Guo L (2012) Effect of B2O3–Bi2O3–PbO frit on the performance of LaBaCo2O5+δ cathode for intermediate-temperature solid oxide fuel cells. Int J Hydrog Energy 37:16117–16122

    Article  CAS  Google Scholar 

  21. Li R, Wang D, Ge L, He S, Chen H, Guo L (2014) Effect of Bi2O3 on the electrochemical performance of LaBaCo2O5+δ cathode for intermediate-temperature solid oxide fuel cells. Ceram Int 40:2599–2603

    Article  CAS  Google Scholar 

  22. He S, Chen H, Li R, Ge L, Guo L (2014) Effect of Ce0.8Sm0.2O1.9 interlayer on the electrochemical performance of La0.75Sr0.25Cr0.5Mn0.5O3-δ–Ce0.8Sm0.2O1.9 composite anodes for intermediate-temperature solid oxide fuel cells. J Power Sources 253:187–192

    Article  CAS  Google Scholar 

  23. He S, Dai H, Cai G, Chen H, Guo L (2015) Optimization of La0.75Sr0.25Cr0.5Mn0.5O3-δ–Ce0.8Sm0.2O1.9 compositionally graded anode functional layer. Electrochim Acta 152:155–160

    Article  CAS  Google Scholar 

  24. Zhou W, Ran R, Shao Z, Cai R, ** W, Xu N, Ahn J (2008) Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathodes prepared via electroless deposition. Electrochim Acta 53:4370–4380

    Article  CAS  Google Scholar 

  25. Lee KT, Manthiram A (2006) Electrochemical performance of Nd0.6Sr0.4Co0.5Fe0.5O3-δ–Ag composite cathodes in intermediate temperature solid oxide fuel cells. J Power Sources 160:903–908

    Article  CAS  Google Scholar 

  26. Li R, Gao L, Ge L, Zheng Y, Zhou M, Chen H, Guo L (2011) Performance of LaBaCo2O5+δ–Ag with B2O3–Bi2O3–PbO frit composite cathodes for intermediate-temperature solid oxide fuel cells. J Power Sources 196:9939–9945

    Article  CAS  Google Scholar 

  27. Kim DH, Bae K, Choi HJ, Shim JH (2018) Ag surface-coated with nano-YSZ as an alternative to Pt catalyst for low-temperature solid oxide fuel cells. J Alloy Compd 769:545–551

    Article  CAS  Google Scholar 

  28. Wu X, Zhou X, Tian Y, Kong X, Zhang J, Zuo W, Ye X, Sun K (2015) Preparation and electrochemical performance of silver impregnated Ni-YSZ anode for solid oxide fuel cell in dry methane. Int J Hydrog Energy 40:16484–16493

    Article  CAS  Google Scholar 

  29. Lay E, Dessemond L, Gauthier G (2013) Ba-substituted LSCM anodes for solid oxide fuel cells. J Power Sources 221:149–156

    Article  CAS  Google Scholar 

  30. Alvarado-Flores J, Bocanegra-Bernal MH, Espitia-Cabrera I, Torres-Moye E, Reyes-Rojas A (2012) Synthesis, crystal stability, and electrical behaviors of La0.7Sr0.3Cr0.4Mn0.6O3-δXCu0.75Ni0.25 for its possible application as SOFC anode. J Mater Sci 47:8118–8127

    Article  CAS  Google Scholar 

  31. Huang S, Feng S, Wang H, Li Y, Wang C (2011) LaNi0.6Fe0.4O3–Ce0.8Sm0.2O1.9–Ag composite cathode for intermediate temperature solid oxide fuel cells. Int J Hydrog Energy 36:10968–10974

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (17KJB430033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoucheng He.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Dai, H., Chen, X. et al. Investigation of La0.75Sr0.25Cr0.5Mn0.5O3-δ–Ag composite anodes for solid oxide fuel cells obtained via a low-temperature sintering process. Ionics 26, 6225–6232 (2020). https://doi.org/10.1007/s11581-020-03750-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03750-y

Keywords

Navigation