Log in

Electrochemical sensor for determination of bisphenol A based on MOF-reduced graphene oxide composites coupled with cetyltrimethylammonium bromide signal amplification

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A sensitive electrochemical sensor was fabricated for the rapid determination of bisphenol A (BPA) based on cerium-centered metal-organic framework electrochemically reduced graphene oxide composite (Ce-MOF-ERGO) coupled with cetyltrimethylammonium bromide (CTAB) signal amplification. The Ce-MOF-ERGO was synthesized by electrochemical reduction of Ce-MOF-graphene oxide (GO) composite. Under the optimized conditions, the proposed electrochemical sensor exhibited a linear response for BPA in concentration range 3 nM to 10 μM with a detection limit of 1.9 nM. The excellent performance of the proposed sensor was attributed to the high conductivity, large surface area, and catalytic activity of Ce-MOF-ERGO composite. Moreover, the oxidation signals of BPA on Ce-MOF-ERGO-modified electrode were further enhanced significantly after addition of CTAB in electrolyte solution. Based on the dual signal amplification strategy, the sensor exhibited high sensitivity for BPA detection and was successfully applied to detect BPA in real samples with good recoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rubin BS (2011) Bisphenol a: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem 127:27–34. https://doi.org/10.1016/j.jsbmb.2011.05.002

    Article  CAS  Google Scholar 

  2. Fan Z, Fan L, Shuang S, Dong C (2018) Highly sensitive photoelectrochemical sensing of bisphenol a based on zinc phthalocyanine/TiO2 nanorod arrays. Talanta 189:16–23. https://doi.org/10.1016/j.talanta.2018.06.043

    Article  CAS  PubMed  Google Scholar 

  3. Huang YQ, Wong CKC, Zheng JS, Bouwman H, Barra R, Wahlström B, Neretin L, Wong MH (2012) Bisphenol a (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int 42:91–99. https://doi.org/10.1016/j.envint.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  4. Rezg R, El-Fazaa S, Gharbi N, Mornagui B (2014) Bisphenol a and human chronic diseases: current evidences, possible mechanisms, and future perspectives. Environ Int 64:83–90. https://doi.org/10.1016/j.envint.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  5. Owczarek K, Kubica P, Kudlak B, Rutkowska A, Konieczna A, Rachon D, Namiesnik J, Wasik A (2018) Determination of trace levels of eleven bisphenol a analogues in human blood serum by high performance liquid chromatography-tandem mass spectrometry. Sci Total Environ 628-629:1362–1368. https://doi.org/10.1016/j.scitotenv.2018.02.148

    Article  CAS  PubMed  Google Scholar 

  6. Wang Z, Yu J, Yao J, Wu L, **ao H, Wang J, Gao R (2018) Simultaneous identification and quantification of bisphenol a and 12 bisphenol analogues in environmental samples using precolumn derivatization and ultra high performance liquid chromatography with tandem mass spectrometry. J Sep Sci 41:2269–2278. https://doi.org/10.1002/jssc.201701087

    Article  CAS  PubMed  Google Scholar 

  7. Gimeno P, Spinau C, Lassu N, Maggio AF, Brenier C, Lempereur L (2015) Identification and quantification of bisphenol a and bisphenol B in polyvinylchloride and polycarbonate medical devices by gas chromatography with mass spectrometry. J Sep Sci 38:3727–3734. https://doi.org/10.1002/jssc.201500552

    Article  CAS  PubMed  Google Scholar 

  8. Fernandez MAM, Andre LC, Cardeal ZD (2017) Hollow fiber liquid-phase microextraction-gas chromatography-mass spectrometry method to analyze bisphenol a and other plasticizer metabolites. J Chromatogr A 1481:31–36. https://doi.org/10.1016/j.chroma.2016.12.043

    Article  CAS  PubMed  Google Scholar 

  9. Deiminiat B, Rounaghi GH, Arbab-Zavar MH, Razavipanah I (2017) A novel electrochemical aptasensor based on f-MWCNTs/AuNPs nanocomposite for label-free detection of bisphenol a. Sensors Actuators B Chem 242:158–166. https://doi.org/10.1016/j.snb.2016.11.041

    Article  CAS  Google Scholar 

  10. Lin X, Cheng C, Terry P, Chen J, Cui H, Wu J (2017) Rapid and sensitive detection of bisphenol a from serum matrix. Biosens Bioelectron 91:104–109. https://doi.org/10.1016/j.bios.2016.12.024

    Article  CAS  PubMed  Google Scholar 

  11. Dhanjai, Sinha A, Wu L, Lu X, Chen J, Jain R (2018) Advances in sensing and biosensing of bisphenols: a review. Anal Chim Acta 998:1–27. https://doi.org/10.1016/j.aca.2017.09.048

    Article  CAS  Google Scholar 

  12. Zhu C, Yang G, Li H, Du D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249. https://doi.org/10.1021/ac5039863

    Article  CAS  PubMed  Google Scholar 

  13. Maduraiveeran G, Sasidharan M, Ganesan V (2018) Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 103:113–129. https://doi.org/10.1016/j.bios.2017.12.031

    Article  CAS  PubMed  Google Scholar 

  14. Ianesko F, de Lima CA, Antoniazzi C, Santana ER, Piovesan JV, Spinelli A, Galli A, de CEG (2018) Simultaneous electrochemical determination of hydroquinone and bisphenol a using a carbon paste electrode modified with silver nanoparticles. Electroanalysis 30:1946–1955. https://doi.org/10.1002/elan.201800074

    Article  CAS  Google Scholar 

  15. Ahmed J, Rahman MM, Siddiquey IA, Asiri AM, Hasnat MA (2017) Efficient bisphenol-a detection based on the ternary metal oxide (TMO) composite by electrochemical approaches. Electrochim Acta 246:597–605. https://doi.org/10.1016/j.electacta.2017.06.072

    Article  CAS  Google Scholar 

  16. Cosi MS, Pellicano A, Brunetti B, Fuenmayor CA (2017) A simple hydroxylated multi-walled carbon nanotubes modified glassy carbon electrode for rapid amperometric detection of bisphenol a. Sensors Actuators B Chem 246:673–679. https://doi.org/10.1016/j.snb.2017.02.104

    Article  CAS  Google Scholar 

  17. Qin J, Shen J, Xu X, Yuan Y, He G, Chen H (2018) A glassy carbon electrode modified with nitrogen-doped reduced graphene oxide and melamine for ultra-sensitive voltammetric determination of bisphenol a. Microchim Acta 185:459. https://doi.org/10.1007/s00604-018-2998-9

  18. Li J, Sculley J, Zhou H (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932. https://doi.org/10.1021/cr200190s

    Article  CAS  PubMed  Google Scholar 

  19. Lu K, Aung T, Guo N, Weichselbaum R, Lin W (2018) Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv Mater 30:1707634. https://doi.org/10.1002/adma.201707634

    Article  Google Scholar 

  20. Liu L, Zhou Y, Liu S, Xu M (2018) The applications of metal-organic frameworks in electrochemical sensors. ChemElectroChem 5:6–19. https://doi.org/10.1002/celc.201700931

    Article  CAS  Google Scholar 

  21. Chidambaram A, Stylianou KC (2018) Electronic metal-organic framework sensors. Inorg Chem Front 5:979–998. https://doi.org/10.1039/c7qi00815e

    Article  CAS  Google Scholar 

  22. Kempahanumakkagari S, Vellingiri K, Deep A, Kwon EE, Bolan N, Kim KH (2018) Metal-organic framework composites as electrocatalysts for electrochemical sensing applications. Coord Chem Rev 357:105–129. https://doi.org/10.1016/j.ccr.2017.11.028

    Article  CAS  Google Scholar 

  23. Liu X, Sun T, Hu J, Wang S (2016) Composites of metal-organic frameworks and carbon-based materials: preparations, functionalities and applications. J Mater Chem A 4:3584–3616. https://doi.org/10.1039/c5ta09924b

    Article  CAS  Google Scholar 

  24. Wang X, Wang Q, Wang Q, Gao F, Gao F, Yang Y, Guo H (2014) Highly dispersible and stable copper terephthalate metal-organic framework-graphene oxide nanocomposite for an electrochemical sensing application. ACS Appl Mater Interfaces 6:11573–11580. https://doi.org/10.1021/am5019918

    Article  CAS  PubMed  Google Scholar 

  25. Zheng Y, Li C, Ding X, Yang Q, Qi Y, Zhang H, Qu L (2017) Detection of dopamine at graphene-ZIF-8 nanocomposite modified electrode. Chin Chem Lett 28:1473–1478. https://doi.org/10.1016/j.cclet.2017.03.014

    Article  CAS  Google Scholar 

  26. Yang J, Zhao F, Zeng B (2015) One-step synthesis of a copper-based metal-organic framework-graphene nanocomposite with enhanced electrocatalytic activity. RSC Adv 5:22060–22065. https://doi.org/10.1039/c4ra16950f

    Article  CAS  Google Scholar 

  27. Li J, **a J, Zhang F, Wang Z, Liu Q (2018) An electrochemical sensor based on copper-based metal-organic frameworks-graphene composites for determination of dihydroxybenzene isomers in water. Talanta 181:80–86. https://doi.org/10.1016/j.talanta.2018.01.002

    Article  CAS  PubMed  Google Scholar 

  28. Chen Q, Li X, Min X, Cheng D, Zhou J, Li Y, **e Z, Liu P, Cai W, Zhang C (2017) Determination of catechol and hydroquinone with high sensitivity using MOF-graphene composites modified electrode. J Electroanal Chem 789:114–122. https://doi.org/10.1016/j.jelechem.2017.02.033

    Article  CAS  Google Scholar 

  29. Duan S, Huang Y (2017) Electrochemical sensor using NH2-MIL-88(Fe)-rGO composite for trace Cd2+, Pb2+, and Cu2+ detection. J Electroanal Chem 807:253–260. https://doi.org/10.1016/j.jelechem.2017.11.051

    Article  CAS  Google Scholar 

  30. Wang Y, Cao W, Wang L, Zhuang Q, Ni Y (2018) Electrochemical determination of 2,4,6-trinitrophenol using a hybrid film composed of a copper-based metal organic framework and electroreduced graphene oxide. Microchim Acta 185:315. https://doi.org/10.1007/s00604-018-2857-8

  31. Zhang Y, Yan P, Wan Q, Yang N (2018) Integration of chromium terephthalate metal-organic frameworks with reduced graphene oxide for voltammetry of 4-nonylphenol. Carbon 134:540–547. https://doi.org/10.1016/j.carbon.2018.02.072

    Article  CAS  Google Scholar 

  32. Zhang J, Xu X, Chen Z (2018) A highly sensitive electrochemical sensor for bisphenol a using cetyltrimethylammonium bromide functionalized carbon nanohorn modified electrode. Ionics 24:2123–2134. https://doi.org/10.1007/s11581-018-2462-1

    Article  CAS  Google Scholar 

  33. Ghanam A, Lahcen AA, Amine A (2017) Electroanalytical determination of bisphenol a: investigation of electrode surface fouling using various carbon materials. J Electroanal Chem 789:58–66. https://doi.org/10.1016/j.jelechem.2017.02.026

    Article  CAS  Google Scholar 

  34. Brugnera MF, Trindade MAG, Zanoni MVB (2010) Detection of bisphenol a on a screen-printed carbon electrode in ctab micellar medium. Anal Lett 43:2823–2836. https://doi.org/10.1080/00032711003731332

    Article  CAS  Google Scholar 

  35. Wu C, Cheng Q, Li L, Chen J, Wu KB (2014) Synergetic signal amplification of graphene-Fe2O3 hybrid and hexadecyltrimethylammonium bromide as an ultrasensitive detection platform for bisphenol a. Electrochim Acta 115:434–439. https://doi.org/10.1016/j.electacta.2013.10.188

    Article  CAS  Google Scholar 

  36. Chen J, Yao BW, Li C, Shi G (2013) An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229. https://doi.org/10.1016/j.carbon.2013.07.055

    Article  CAS  Google Scholar 

  37. Liu K, You H, Jia G, Zheng Y, Huang Y, Song Y, Yang M, Zhang L, Zhang H (2010) Hierarchically nanostructured coordination polymer: facile and rapid fabrication and tunable morphologies. Cryst Growth Des 10:790–797. https://doi.org/10.1021/cg901170j

    Article  CAS  Google Scholar 

  38. Zheng W, **ong Z, Li H, Yu S, Li G, Niu L, Liu W (2018) Electrodeposited Pt@molecularly imprinted polymer core-shell nanostructure: enhanced sensing platform for sensitive and selective detection of bisphenol a. Sensors Actuators B Chem 272:655–661. https://doi.org/10.1016/j.snb.2018.07.039

    Article  CAS  Google Scholar 

  39. Tang J, Jiang S, Liu Y, Zheng S, Bai L, Guo J, Wang J (2018) Electrochemical determination of dopamine and uric acid using a glassy carbon electrode modified with a composite consisting of a co(II)-based metalorganic framework (ZIF-67) and graphene oxide. Microchim Acta 185:486. https://doi.org/10.1007/s00604-018-3025-x

  40. Maiti S, Pramanik A, Mahanty S (2014) Extraordinarily high pseudocapacitance of metal organic framework derived nanostructured cerium oxide. Chem Commun 50:11717–11720. https://doi.org/10.1039/C4CC05363J

    Article  CAS  Google Scholar 

  41. Zeng G, Chen Y, Chen L, **ong P, Wei M (2016) Hierarchical cerium oxide derived from metal-organic frameworks for high performance supercapacitor electrodes. Electrochim Acta 222:773–780. https://doi.org/10.1016/j.electacta.2016.11.035

    Article  CAS  Google Scholar 

  42. Sun J, Bai S, Tian Y, Zhao Y, Han N, Luo R, Li D, Chen A (2018) Hybridization of ZnSnO3 and rGO for improvement of formaldehyde sensing properties. Sensors Actuators B Chem 257:29–36. https://doi.org/10.1016/j.snb.2017.10.015

    Article  CAS  Google Scholar 

  43. Wang Y, Li C, Wu T, Ye X (2018) Polymerized ionic liquid functionalized graphene oxide nanosheets as a sensitive platform for bisphenol a sensing. Carbon 129:21–28. https://doi.org/10.1016/j.carbon.2017.11.090

    Article  CAS  Google Scholar 

  44. Wang X, Che J, Wu M, Shi YR, Li MJ, Shan JJ, Liu LF (2018) The anti-fouling effect of surfactants and its application for electrochemical detection of bisphenol a. J Electrochem Soc 165:B814–B823. https://doi.org/10.1149/2.0401816jes

    Article  CAS  Google Scholar 

  45. Zhang B, Wang Y, Dai X, Liu D, He X (2015) A nitrogen and sulfur co-doped graphene-supported nickel tetrapyridyloxyphthalocyanine hybrid fabricated by a solvothermal method and its application for the detection of bisphenol a. RSC Adv 5:84457–84464. https://doi.org/10.1039/C5RA14516C

    Article  CAS  Google Scholar 

  46. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28. https://doi.org/10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  47. Gholivand MB, Akbari A (2018) A novel and high sensitive MWCNTs-nickel carbide/hollow fiber-pencil graphite modified electrode for in situ ultra-trace analysis of bisphenol a. J Electroanal Chem 817:9–17. https://doi.org/10.1016/j.jelechem.2018.03.065

    Article  CAS  Google Scholar 

  48. Li Y, Wang H, Yan B, Zhang H (2017) An electrochemical sensor for the determination of bisphenol a using glassy carbon electrode modified with reduced graphene oxide-silver/poly-L-lysine nanocomposites. J Electroanal Chem 805:39–46. https://doi.org/10.1016/j.jelechem.2017.10.022

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21707014), the Fundamental Research Funds for the Central Universities (No. DUT18JC33), Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering, MOE (No. KLIEEE-16-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Shi, Y., Shan, J. et al. Electrochemical sensor for determination of bisphenol A based on MOF-reduced graphene oxide composites coupled with cetyltrimethylammonium bromide signal amplification. Ionics 26, 3135–3146 (2020). https://doi.org/10.1007/s11581-019-03260-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03260-6

Keywords

Navigation