Log in

Electrochemical sensor for the sensitive determination of parathion based on the synergistic effect of ZIF-8 and ionic liquid

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, a sensitive electrochemical sensor for parathion was developed on the basis of the synergistic effect of the zeolitic imidazolate framework (ZIF-8) and a pyrrolidinium ionic liquid (PIL). Cyclic voltammetry and electrochemical impedance spectroscopy were employed to characterize the electrochemical properties of the modified electrodes. The PIL/ZIF-8-modified carbon paste electrode (PIL/ZIF-8/CPE) exhibited a high electrode surface area and a more rapid electron-transfer rate compared with the other electrodes. In addition, the electrochemical behavior of parathion at various electrodes was examined. The voltammetric response of parathion at the PIL/ZIF-8/CPE significantly increased in comparison with those at the bare carbon paste electrode (CPE), ZIF-8, and PIL-modified CPE. These results were possibly related to the synergistic effect between ZIF-8 and PIL, both exhibiting unique electronic and catalytic properties. Under optimized conditions, the calibration curve for parathion exhibited a linear range of 5.0–700 μg/L, with a limit of detection of 2.0 μg/L. The proposed electrochemical sensor was applied for the determination of parathion in vegetable samples with recoveries from 90.5 to 109%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yi FY, Chen DX, Wu MK, Han L, Jiang HL (2016) Chemical sensors based on metal–organic frameworks. ChemPlusChem 81:675–690

    Article  CAS  Google Scholar 

  2. Liu LT, Zhou YL, Liu S, Xu MT (2018) The applications of metal–organic frameworks in electrochemical sensors. ChemElectroChem 5:6–19

    Article  CAS  Google Scholar 

  3. Stassen I, Styles M, Grenci G, Gorp HV, Vanderlinden W, Feyter SD, Falcaro P, Dirk DV, Vereecken P, Ameloot R (2016) Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat Mater 15:304–310

    Article  CAS  Google Scholar 

  4. Hou C, Zhao DY, Wang Y, Zhang SF, Li SY (2018) Preparation of magnetic Fe3O4/PPy@ZIF-8 nanocomposite for glucose oxidase immobilization and used as glucose electrochemical biosensor. J Electroanal Chem 822:50–56

    Article  CAS  Google Scholar 

  5. Yu GG, **a JF, Zhang FF, Wang ZH (2017) Hierarchical and hybrid RGO/ZIF-8 nanocomposite as electrochemical sensor for ultrasensitive determination of dopamine. J Electroanal Chem 801:496–502

    Article  CAS  Google Scholar 

  6. Nie M, Lu S, Lei D, Yang C, Zhao ZZ (2017) Rapid synthesis of ZIF-8 nanocrystals for electrochemical detection of dopamine. J Electrochem Soc 164:H952–H957

    Article  CAS  Google Scholar 

  7. Samadi-Maybodi A, Ghasemi S, Ghaffari-Rad H (2015) A novel sensor based on Ag-loaded zeolitic imidazolate framework-8 nanocrystals for efficient electrocatalytic oxidation and trace level detection of hydrazine. Sensors Actuators B Chem 220:627–633

    Article  CAS  Google Scholar 

  8. Opallo M, Lesniewski A (2011) A review on electrodes modified with ionic liquids. J Electroanal Chem 656:2–16

    Article  CAS  Google Scholar 

  9. Sarabia L, Maurer I, Bustos-Obregón E (2009) Melatonin prevents damage elicited by the organophosphorous pesticide diazinon on mouse sperm DNA. Ecotoxicol Environ Saf 72:663–668

    Article  CAS  Google Scholar 

  10. Bui MPN, Seo SS (2015) Electrochemical analysis of parathion-ethyl using zirconium oxide–laponite nanocomposites-modified glassy carbon electrode. J Appl Electrochem 45:365–373

    Article  CAS  Google Scholar 

  11. de LCA, Santana ER, Piovesan JV, Spinelli A (2016) Silver nanoparticle-modified electrode for the determination of nitro compound-containing pesticides. Anal Bioanal Chem 408:2595–2606

    Article  Google Scholar 

  12. Sanghavi BJ, Hirsch G, Karna SP, Srivastava AK (2016) Potentiometric strip** analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode. Anal Chim Acta 735:37–45

    Article  Google Scholar 

  13. Yang Q, Sun Q, Zhou T, Shi G, ** L (2006) Determination of parathion in vegetables by electrochemical sensor based on molecularly imprinted polyethyleneimine/silica gel films. J Agric Food Chem 57:6558–6563

    Article  Google Scholar 

  14. Cravillon J, Münzer S, Lohmeier SJ, Feldhoff A, Huber K, Wiebcke M (2009) Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater 21:1410–1412

    Article  CAS  Google Scholar 

  15. Song Y, Hu D, Liu F, Chen S, Wang L (2015) Fabrication of fluorescent SiO2@ zeolitic imidazolate framework-8 nanosensor for Cu2+ detection. Analyst 140:623–629

    Article  CAS  Google Scholar 

  16. Hu L, Chen L, Fang Y, Wang A, Chen C, Yan Z (2018) Facile synthesis of zeolitic imidazolate framework-8 (ZIF-8) by forming imidazole-based deep eutectic solvent. Microporous Mesoporous Mater 268:207–215

    Article  CAS  Google Scholar 

  17. Pan Y, Liu Y, Zeng G, Lai Z (2011) Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem Commun 47:2071–2073

    Article  CAS  Google Scholar 

  18. Bustamante EL, Fernández JL, Zamaro JM (2014) Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. J Colloid Interface Sci 424:37–43

    Article  CAS  Google Scholar 

  19. Jafari S, Ghorbani-Shahna F, Bahrami A, Kazemian H (2018) Adsorptive removal of toluene and carbon tetrachloride from gas phase using zeolitic imidazolate framework-8: effects of synthesis method, particle size, and pretreatment of the adsorbent. Microporous Mesoporous Mater 268:58–68

    Article  CAS  Google Scholar 

  20. Hu Y, Kazemian H, Rohani S, Huang Y, Song Y (2011) In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chem Commun 47:12694–12696

    Article  CAS  Google Scholar 

  21. Alizadeh T, Mirzagholipur S (2014) A Nafion-free non-enzymatic amperometric glucose sensor based on copper oxide nanoparticles–graphene nanocomposite. Sensors Actuators B Chem 198:438–447

    Article  CAS  Google Scholar 

  22. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York, p 143

    Google Scholar 

  23. Zhou J, Li X, Yang L, Yan S, Wang M, Cheng D, Chen Q, Dong Y, Liu P, Cai W, Zhang C (2015) The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits. Anal Chim Acta 899:57–65

    Article  CAS  Google Scholar 

  24. K’Owino IO, Sadik OA (2005) Impedance spectroscopy: a powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis 17:2101–2113

    Article  Google Scholar 

Download references

Funding

This article was supported by the Guangxi Science and Technology Major Projects (No. AA17204043-2), the Natural Science Foundation of Guangxi (No. 2018GXNSFAA281228), the Guangxi Funds for Special-invited Experts, and the Guangxi Academy of Agricultural Sciences Funds for Excellent Young Scholars (2018YM26).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Ya or Feiyan Yan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Huang, X., Zheng, L. et al. Electrochemical sensor for the sensitive determination of parathion based on the synergistic effect of ZIF-8 and ionic liquid. Ionics 25, 5013–5021 (2019). https://doi.org/10.1007/s11581-019-03013-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03013-5

Keywords

Navigation