Log in

MOF-derived Co nanoparticles embedded in N,S-codoped carbon layer/MWCNTs for efficient oxygen reduction in alkaline media

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The hydrothermal reaction of cobalt salt in the presence of 4-pyridyl-tetrathiafulvalene-4-pyridyl (4-py-TTF-4-py) and terephthalic acid (PTA) has been employed for the preparation of a novel metal–organic framework (MOF), i.e., (4-py-TTF-4-py)2M2(PTA)4 (M = Co2+). The obtained MOF is then used as a starting material for the synthesis of Co nanoparticles embedded in N,S-codoped carbon layer and supported on multi-walled carbon nanotubes (Co@NSC/MWCNTs) through the high-temperature calcination. Specifically, the calcination leads to the formation of N,S-codoped carbon-coated Co nanoparticles with simultaneous growth on the MWCNTs due to decomposition of the MOF. When used as the electrocatalyst, the Co@NSC/MWCNTs are found to have a higher activity for the oxygen reduction reaction (ORR) and follow a four-electron pathway. The catalytic activity of the Co@NSC/MWCNTs is much higher than that of the pure MWCNTs and the MOFs/MWCNTs. Although the Co@NSC/MWCNTs still exhibit slightly higher overpotential for the ORR, it is indeed more kinetically facile than the commercial Pt/C catalyst, as demonstrated by its higher limiting current density and lower Tafel slope. Additionally, the Co@NSC/MWCNTs also show superior stability and better tolerance to methanol crossover and CO poisoning, compared with those of the commercial Pt/C catalyst. These results strongly suggest that the Co@NSC/MWCNTs could be used as one of the most promising ORR electrocatalysts for the ORR with great potential to replace the Pt/C. The work present here opens up a new route for the design of carbon-integrated ORR electrocatalysts with high performance from a great number of available and yet rapidly growing MOFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen Z, Higgins D, Chen Z (2010) Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells. Carbon 48(11):3057–3065

    Article  CAS  Google Scholar 

  2. Hu C, Dai L (2016) Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew Chem Int Ed 55(39):11736–11758

    Article  CAS  Google Scholar 

  3. Jiang Z, Jiang Z-J, Maiyalagan T, Manthiram A (2016) Cobalt oxide-coated N- and B-doped graphene hollow spheres as bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. J Mater Chem A 4(16):5877–5889

    Article  CAS  Google Scholar 

  4. Li Q, Cao R, Cho J, Wu G (2014) Nanocarbon electrocatalysts for oxygen reduction in alkaline media for advanced energy conversion and storage. Adv Energy Mater 4(6):1301415–1301433

  5. Paraknowitsch JP, Thomas A (2013) Do** carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci 6(10):2839–2855

  6. Jiang Z, Zhao X, Tian X, Luo L, Fang J, Gao H, Jiang ZJ (2015) Hydrothermal synthesis of boron and nitrogen codoped hollow graphene microspheres with enhanced electrocatalytic activity for oxygen reduction reaction. ACS Appl Mater Interfaces 7(34):19398–19407

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Chen Y, Tang Y, Li S, Dong H, Li K, Han M, Lan Y-Q, Bao J, Dai Z (2014) Metal–organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions. J Mater Chem A 2(18):6316–6319

    Article  CAS  Google Scholar 

  8. Kim J, Lee SW, Carlton C, Shao-Horn Y (2011) Pt-covered multiwall carbon nanotubes for oxygen reduction in fuel cell applications. J Phys Chem Lett 2(11):1332–1336

    Article  CAS  PubMed  Google Scholar 

  9. Yu X, Ye S (2007) Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. J Power Sources 172(1):145–154

    Article  CAS  Google Scholar 

  10. Ma R, Zhou Y, Chen Y, Li P, Liu Q, Wang J (2015) Ultrafine molybdenum carbide nanoparticles composited with carbon as a highly active hydrogen-evolution electrocatalyst. Angew Chem Int Ed 54(49):14723–14727

    Article  CAS  Google Scholar 

  11. Ge L, Lin R, Zhu Z, Wang H (2017) A nitrogen-doped electrocatalyst from metal–organic framework-carbon nanotube composite. J Mater Res 33(05):538–545

    Article  CAS  Google Scholar 

  12. Hou Y, Wen Z, Cui S, Ci S, Mao S, Chen J (2015) An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv Funct Mater 25(6):872–882

    Article  CAS  Google Scholar 

  13. Zhang L, Wang A, Wang W, Huang Y, Liu X, Miao S, Liu J, Zhang T (2015) Co–N–C catalyst for C–C coupling reactions: on the catalytic performance and active sites. ACS Catal 5(11):6563–6572

    Article  CAS  Google Scholar 

  14. Aijaz A, Masa J, Rosler C, **a W, Weide P, Botz AJ, Fischer RA, Schuhmann W, Muhler M (2016) Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew Chem Int Ed 55(12):4087–4091

    Article  CAS  Google Scholar 

  15. Jiang ZJ, Jiang Z (2016) Interaction induced high catalytic activities of CoO nanoparticles grown on nitrogen-doped hollow graphene microspheres for oxygen reduction and evolution reactions. Sci Rep 6:27081-27094

  16. Feng Y, Alonso-Vante N (2012) Carbon-supported cubic CoSe2 catalysts for oxygen reduction reaction in alkaline medium. Electrochim Acta 72:129–133

    Article  CAS  Google Scholar 

  17. Feng Y, He T, Alonso-Vante N (2007) In situ free-surfactant synthesis and ORR-electrochemistry of carbon-supported Co3S4 and CoSe2 nanoparticles. Chem Mater 20(1):26–28

    Article  CAS  Google Scholar 

  18. **a W, Mahmood A, Liang Z, Zou R, Guo S (2016) Earth-abundant nanomaterials for oxygen reduction. Angew Chem Int Ed 55(8):2650–2676

    Article  CAS  Google Scholar 

  19. Wang Z, **ao S, Zhu Z, Long X, Zheng X, Lu X, Yang S (2015) Cobalt-embedded nitrogen doped carbon nanotubes: a bifunctional catalyst for oxygen electrode reactions in a wide pH range. ACS Appl Mater Interfaces 7(7):4048–4055

    Article  CAS  PubMed  Google Scholar 

  20. Zhou M, Wang HL, Guo S (2016) Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem Soc Rev 45(5):1273–1307

    Article  CAS  PubMed  Google Scholar 

  21. Sohrabi S, Dehghanpour S, Ghalkhani M (2017) A cobalt porphyrin-based metal organic framework/multi-walled carbon nanotube composite electrocatalyst for oxygen reduction and evolution reactions. J Mater Sci 53(5):3624–3639

    Article  CAS  Google Scholar 

  22. Chen B, Ma G, Zhu Y, **a Y (2017) Metal-organic-frameworks derived cobalt embedded in various carbon structures as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Sci Rep 7(1):5266–5274

  23. Ma L, Chen S, Pei Z, Huang Y, Liang G, Mo F, Yang Q, Su J, Gao Y, Zapien JA, Zhi C (2018) Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. ACS Nano 12(2):1949–1958

    Article  CAS  PubMed  Google Scholar 

  24. Zhu H, Sun Z, Chen N, Cao H, Chen M, Li K, Cai Y, Wang F (2017) A non-precious-metal catalyst derived from a Cp2-Co+-PBI composite for cathodic oxygen reduction under both acidic and alkaline conditions. ChemElectroChem 4(5):1117–1123

    Article  CAS  Google Scholar 

  25. Zuo Z, Wang D, Zhang J, Lu F, Li Y (2018) Synthesis and applications of graphdiyne-based metal-free catalysts. Adv Mater 1803762–1803774

  26. Huang C, Li Y, Wang N, Xue Y, Zuo Z, Liu H, Li Y (2018) Progress in research into 2D graphdiyne-based materials. Chem Rev 118(16):7744–7803

    Article  CAS  PubMed  Google Scholar 

  27. Song Z, Cheng N, Lushington A, Sun X (2016) Recent progress on MOF-derived nanomaterials as advanced electrocatalysts in fuel cells. Catalysts 6(12):116–134

  28. Yap MH, Fow KL, Chen GZ (2017) Synthesis and applications of MOF-derived porous nanostructures. Green Energy Environ 2(3):218–245

    Article  Google Scholar 

  29. Zhang W, Liu Y, Lu G, Wang Y, Li S, Cui C, Wu J, Xu Z, Tian D, Huang W, DuCheneu JS, Wei WD, Chen H, Yang Y, Huo F (2015) Mesoporous metal-organic frameworks with size-, shape-, and space-distribution-controlled pore structure. Adv Mater 27(18):2923–2929

    Article  CAS  PubMed  Google Scholar 

  30. **ao X, Pan W, Wang Z, Shen L, Fang J, Gao H, Li X, Fujiwara H (2014) Self-ordering of organic-metal hybrid microstructures based on tetrathiafulvalene derivatives. Synth Met 189:42–46

    Article  CAS  Google Scholar 

  31. Yadav RM, Wu J, Kochandra R, Ma L, Tiwary CS, Ge L, Ye G, Vajtai R, Lou J, Ajayan PM (2015) Carbon nitrogen nanotubes as efficient bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 7(22):11991–12000

    Article  CAS  PubMed  Google Scholar 

  32. Wang S, Yu D, Dai L (2011) Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J Am Chem Soc 133(14):5182–5185

    Article  CAS  PubMed  Google Scholar 

  33. Shi Q, Wang Y, Wang Z, Lei Y, Wang B, Wu N, Han C, **e S, Gou Y (2015) Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/carbon nanotubes on Co-containing carbon nanofibers for enhanced oxygen reduction. Nano Res 9(2):317–328

    Article  CAS  Google Scholar 

  34. Tendeloo G, Nagy J (1998) Purification of catalytically produced multi-wall nanotubes. J Chem Soc Faraday Trans 94(24):3753–3758

    Article  Google Scholar 

  35. Zhang L, Wang X, Wang R, Hong M (2015) Structural evolution from metal–organic framework to hybrids of nitrogen-doped porous carbon and carbon nanotubes for enhanced oxygen reduction activity. Chem Mater 27(22):7610–7618

    Article  CAS  Google Scholar 

  36. Zheng R, Mo Z, Liao S, Song H, Fu Z, Huang P (2014) Heteroatom-doped carbon nanorods with improved electrocatalytic activity toward oxygen reduction in an acidic medium. Carbon 69:132–141

    Article  CAS  Google Scholar 

  37. Wang J, Wu Z, Han L, Lin R, ** of partially exfoliated MWCNTs as 3-D structured electrocatalysts for the oxygen reduction reaction. J Mater Chem A 4(15):5678–5684

    Article  CAS  Google Scholar 

  38. Duan J, Chen S, Dai S, Qiao SZ (2014) Shape control of Mn3O4 nanoparticles on nitrogen-doped graphene for enhanced oxygen reduction activity. Adv Funct Mater 24(14):2072–2078

    Article  CAS  Google Scholar 

  39. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8(4):235–246

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y, Chen N, Wang F, Cai Y, Zhu H (2017) Pt–Co deposited on polyaniline-modified carbon for the electro-reduction of oxygen: the interaction between Pt–Co nanoparticles and polyaniline. New J Chem 41(14):6585–6592

    Article  CAS  Google Scholar 

  41. Meng J, Niu C, Xu L, Li J, Liu X, Wang X, Wu Y, Xu X, Chen W, Li Q, Zhu Z, Zhao D, Mai L (2017) General oriented formation of carbon nanotubes from metal-organic frameworks. J Am Chem Soc 139(24):8212–8221

    Article  CAS  PubMed  Google Scholar 

  42. Mousavi-Khoshdel SM, Jahanbakhsh-bonab P, Targholi E (2016) Structural, electronic properties, and quantum capacitance of B, N and P-doped armchair carbon nanotubes. Phys Lett A 380(41):3378–3383

    Article  CAS  Google Scholar 

  43. Song J, Liu T, Ali S, Li B, Su D (2017) The synergy effect and reaction pathway in the oxygen reduction reaction on the sulfur and nitrogen dual doped graphene catalyst. Chem Phys Lett 677:65–69

    Article  CAS  Google Scholar 

  44. Zhao Y, Wan J, Yao H, Zhang L, Lin K, Wang L, Yang N, Liu D, Song L, Zhu J, Gu L, Liu L, Zhao H, Li Y, Wang D (2018) Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat Chem 10(9):924–931

    Article  CAS  PubMed  Google Scholar 

  45. Shang H, Zuo Z, Zheng H, Li K, Tu Z, Yi Y, Liu H, Li Y, Li Y (2018) N-doped graphdiyne for high-performance electrochemical electrodes. Nano Energy 44:144–154

    Article  CAS  Google Scholar 

  46. Liu S, Li G, Gao Y, ** carbon nanotubes with N, S, and B for electrocatalytic oxygen reduction: a systematic investigation on single, double, and triple doped modes. Catal Sci Technol 7(18):4007–4016

    Article  CAS  Google Scholar 

  47. El-Sawy AM, Mosa IM, Su D, Guild CJ, Khalid S, Joesten R, Rusling JF, Suib SL (2016) Controlling the active sites of sulfur-doped carbon nanotube-graphene nanolobes for highly efficient oxygen evolution and reduction catalysis. Adv Energy Mater 6(5):1501966–1501977

  48. Nie Y, Li L, Wei Z (2015) Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 44(8):2168–2201

    Article  CAS  PubMed  Google Scholar 

  49. Yu Y, **n HL, Hovden R, Wang D, Rus ED, Mundy JA, Muller DA, Abruna HD (2012) Three-dimensional tracking and visualization of hundreds of Pt-Co fuel cell nanocatalysts during electrochemical aging. Nano Lett 12(9):4417–4423

    Article  CAS  PubMed  Google Scholar 

  50. Zhu H, Cai Y, Wang F, Gao P, Cao J (2018) Scalable preparation of the chemically ordered Pt-Fe-Au nanocatalysts with high catalytic reactivity and stability for oxygen reduction reactions. ACS Appl Mater Interfaces 10(26):22156–22166

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Y, Huang Q, Zou Z, Yang J, Vogel W, Yang H (2010) Enhanced durability of Au cluster decorated Pt nanoparticles for the oxygen reduction reaction. J Phys Chem C 114(14):6860–6868

    Article  CAS  Google Scholar 

  52. Davies J, Tsotridis G (2008) Temperature-dependent kinetic study of CO desorption from Pt PEM fuel cell anodes. J Phys Chem C 112(9):3392–3397

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Chinese National Natural Science Foundation (Nos. U1532139 and 21476156), the Ningbo Natural Science Foundation (No. 2017A610059), Fundamental Research Funds for the Central Universities of SCUT (No.2018ZD25), the Guangdong Provincial Natural Science Foundation (No. 2017A030313092), and the Guangdong Innovative and Entepreneurial Research Team Program (No. 2014ZT05N200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongqing Jiang, Xunwen **ao or **aogang Hao.

Electronic supplementary material

Supplementary data associated with this article can be found, in the online version, at

ESM 1

(DOCX 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Jiang, Z., **ao, X. et al. MOF-derived Co nanoparticles embedded in N,S-codoped carbon layer/MWCNTs for efficient oxygen reduction in alkaline media. Ionics 25, 785–796 (2019). https://doi.org/10.1007/s11581-018-2775-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2775-0

Keywords

Navigation