Log in

A lithium salt additive Li2ZrF6 for enhancing the electrochemical performance of high-voltage LiNi0.5Mn1.5O4 cathode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, Li2ZrF6, a lithium salt additive, is reported to improve the interface stability of LiNi0.5Mn1.5O4 (LNMO)/electrolyte interface under high voltage (4.9 V vs Li/Li+). Li2ZrF6 is an effective additive to serve as an in situ surface coating material for high-voltage LNMO half cells. A protective SEI layer is formed on the electrode surface due to the involvement of Li2ZrF6 during the formation of SEI layer. Charge/discharge tests show that 0.15 mol L−1 Li2ZrF6 is the optimal concentration for the LiNi0.5Mn1.5O4 electrode and it can improve the cycling performance and rate property of LNMO/Li half cells. The results obtained by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) demonstrate that Li2ZrF6 can facilitate the formation of a thin, uniform, and stable solid electrolyte interface (SEI) layer. This layer inhibits the oxidation decomposition of the electrolyte and suppresses the dissolution of the cathode materials, resulting in improved electrochemical performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176. https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  2. Li Q, Chen J, Fan L, Kong XQ, Lu YY (2016) Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ 1(1):18–42. https://doi.org/10.1016/j.gee.2016.04.006

    Article  Google Scholar 

  3. Li WW, Chen SM, Yu J, Fang DL, Ren BZ, Zhang SJ (2016) In-situ synthesis of interconnected SWCNT/OMC framework on silicon nanoparticles for high performance lithium-ion batteries. Green Energy Environ 1(1):91–99. https://doi.org/10.1016/j.gee.2016.04.005

    Article  Google Scholar 

  4. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262. https://doi.org/10.1039/c1ee01598b

    Article  CAS  Google Scholar 

  5. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417. https://doi.org/10.1021/cr030203g

    Article  CAS  PubMed  Google Scholar 

  6. Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114(23):11503–11161. https://doi.org/10.1021/cr500003w

    Article  CAS  PubMed  Google Scholar 

  7. Zhang ZC, Hu LB, Wu HM, Weng W, Koh M, Redfern PC, Curtiss LA, Amine K (2013) Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ Sci 6(6):1806–1810. https://doi.org/10.1039/c3ee24414h

    Article  CAS  Google Scholar 

  8. Zheng RJ, Wang WH, Dai YK, Ma QX, Liu YL, Mu DY, Li RH, Ren J, Dai CS (2017) A closed-loop process for recycling LiNixCoyMn(1−x−y)O2 from mixed cathode materials of lithium-ion batteries. Green Energy Environ 2:42–50. https://doi.org/10.1016/j.gee.2016.11.010

    Article  Google Scholar 

  9. Manthiram A, Chemelewski K, Lee ES (2014) A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ Sci 7(4):1339–1350. https://doi.org/10.1039/c3ee42981d

    Article  CAS  Google Scholar 

  10. Brandt A, Balducci A, Rodehorst U, Menne S, Winter M, Bhaskar A (2014) Investigations about the use and the degradation mechanism of LiNi0.5Mn1.5O4 in a high power LIC. J Electrochem Soc 161(6):A1139–A1143. https://doi.org/10.1149/2.105406je

    Article  CAS  Google Scholar 

  11. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603. https://doi.org/10.1021/cm901452z

    Article  CAS  Google Scholar 

  12. Su CC, He MN, Peebles C, Zeng L, Tornheim A, Liao C, Zhang L, Wang J, Wang Y, Zhang CC (2017) Functionality selection principle for high voltage lithium-ion battery electrolyte additives. ACS Appl Mater Interfaces 9(36):30686–30695. https://doi.org/10.1021/acsami.7b08953

    Article  CAS  PubMed  Google Scholar 

  13. Lu DS, Xu MQ, Zhou L, Garsuch A, Lucht BL (2013) Failure mechanism of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature. J Electrochem Soc 160(5):A3138–A3143. https://doi.org/10.1149/2.022305jes

    Article  CAS  Google Scholar 

  14. Shao N, Sun XG, Dai S, Jiang DE (2011) Electrochemical windows of sulfone-based electrolytes for high-voltage li-ion batteries. J Phys Chem B 115(42):12120–12125. https://doi.org/10.1021/jp204401t

    Article  CAS  PubMed  Google Scholar 

  15. Wu F, Zhou H, Bai Y, Wang HL, Wu C (2015) Toward 5 V Li-ion batteries: quantum chemical calculation and electrochemical characterization of Sulfone-based high-voltage electrolytes. ACS Appl Mater Interfaces 7(27):15098–15107. https://doi.org/10.1021/acsami.5b04477

    Article  CAS  PubMed  Google Scholar 

  16. **a J, Dahn JR (2016) Improving sulfolane-based electrolyte for high voltage Li-ion cells with electrolyte additives. J Power Sources 324:704–711. https://doi.org/10.1016/j.jpowsour.2016.06.008

    Article  CAS  Google Scholar 

  17. Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A (2014) Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J Am Chem Soc 136(13):5039–5046. https://doi.org/10.1021/ja412807w

    Article  CAS  PubMed  Google Scholar 

  18. Pandian S, Raju SG, Hariharan KS, Kolake SM, Park DH, Lee MJ (2015) Functionalized ionic liquids as electrolytes for lithium-ion batteries. J Power Sources 286:204–209. https://doi.org/10.1016/j.jpowsour.2015.03.130

    Article  CAS  Google Scholar 

  19. Zheng XZ, Wang WG, Huang T, Fang GH, Pan Y, Wu MX (2016) Evaluation of di(2,2,2-trifluoroethyl) sulfite as a film-forming additive on the MCMB anode of lithium-ion batteries. J Power Sources 329:450–455. https://doi.org/10.1016/j.jpowsour.2016.08.108

    Article  CAS  Google Scholar 

  20. Liu WJ, Shi Q, Qu QT, Gao T, Zhu GB, Shao J, Zheng HH (2017) Improved Li-ion diffusion and stability of a LiNi0.5Mn1.5O4 cathode through in situ co-do** with dual-metal cations and incorporation of a superionic conductor. J Mater Chem A 5(1):145–154. https://doi.org/10.1039/c6ta08891k

    Article  CAS  Google Scholar 

  21. Wang G, Wen WC, Chen SH, Yu RZ, Wang XY, Yang XK (2016) Improving the electrochemical performances of spherical LiNi0.5Mn1.5O4 by Fe2O3 surface coating for lithium-ion batteries. Electrochim Acta 212:791–799. https://doi.org/10.1016/j.electacta.2016.07.025

    Article  CAS  Google Scholar 

  22. Hwang T, Lee JK, Mun J, Choi W (2016) Surface-modified carbon nanotube coating on high-voltage LiNi0.5Mn1.5O4 cathodes for lithium ion batteries. J Power Sources 322:40–48. https://doi.org/10.1016/j.jpowsour.2016.04.118

    Article  CAS  Google Scholar 

  23. Xu MQ, Zhou L, Dong YN, Chen YJ, Garsuch A, Lucht BL (2013) Improving the performance of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature with added lithium Bis(oxalato) borate (LiBOB). J Electrochem Soc 160(11):A2005–A2013. https://doi.org/10.1149/2.053311jes

    Article  CAS  Google Scholar 

  24. Luo Y, Lu TL, Zhang YX, Yan LQ, **e JY, Mao SS (2016) Enhanced electrochemical performance of LiNi0.5Mn1.5O4 cathode using an electrolyte with 3-(1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoropropane. J Power Sources 323:134–141. https://doi.org/10.1016/j.jpowsour.2016.05.053

    Article  CAS  Google Scholar 

  25. Kim S, Kim M, Choi I, Kim JJ (2016) Quercetin as electrolyte additive for LiNi0.5Mn1.5O4 cathode for lithium-ion secondary battery at elevated temperature. J Power Sources 336:316–324. https://doi.org/10.1016/j.jpowsour.2016.10.079

    Article  CAS  Google Scholar 

  26. Rong HB, Xu MQ, **e BY, Lin HB, Zhu YM, Zheng XW, Huang WZ, Liao YH, **ng LD, Li WS (2016) A novel imidazole-based electrolyte additive for improved electrochemical performance at elevated temperature of high-voltage LiNi0.5Mn1.5O4 cathodes. J Power Sources 329:586–593. https://doi.org/10.1016/j.jpowsour.2016.07.120

    Article  CAS  Google Scholar 

  27. Xu Y, Wan LY, Liu JL, Zeng LC, Yang ZG (2017) g-butyrolactone and glutaronitrile as 5 V electrolyte additive and its electrochemical performance for LiNi0.5Mn1.5O4. J Alloys Compd 698:207–214. https://doi.org/10.1016/j.jallcom.2016.11.381

    Article  CAS  Google Scholar 

  28. Lu YY, Xu SM, Shu J, Aladat WIA, Archer LA (2015) High voltage LIB cathodes enabled by salt-reinforced liquid electrolytes. Electrochem Commun 51:23–26. https://doi.org/10.1016/j.elecom.2014.11.010

    Article  CAS  Google Scholar 

  29. Hannink RJ, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83(3):461–487. https://doi.org/10.1111/j.1151-2916.2000.tb01221.x

    Article  CAS  Google Scholar 

  30. Shi SK (2013) Synthesis method of lithium hexafluorozirconate and new application thereof. Faming Zhuanli Shenqing Gongkai Shuomingshu, CN103227326A (in Chinese)

  31. Zhou L, Wu YN, Huang J, Fang X, Wang T, Liu WM, Wang Y, ** Y, Tang XC (2017) Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with Li+-conductive Li2SiO3 for lithium ion batteries. J Alloys Compd 724:991–999. https://doi.org/10.1016/j.jallcom.2017.05.328

    Article  CAS  Google Scholar 

  32. Xu XL, Deng SX, Wang H, Liu JB, Yan H (2017) Research progress in improving the cycling stability of high voltage LiNi Mn O cathode in lithium-ion battery. Nano-Micro Lett 9(2):22–40. https://doi.org/10.1007/s40820-016-0123-3

  33. Tao S, Kong FJ, Wu CQ, Su XZ, **ang T, Chen SM, Hou HH, Zhang L, Fang Y, Wang ZC, Chu WS, Qian B, Song L (2017) Nanoscale TiO2 membrane coating spinel LiNi0.5Mn1.5O4 cathode material for advanced lithium-ion batteries. J Alloys Compd 705:413–419. https://doi.org/10.1016/j.jallcom.2017.02.139

    Article  CAS  Google Scholar 

  34. Dai XY, Zhou AJ, Xu J, Lu YT, Wang LP, Fan C, Li JZ (2016) Extending the high-voltage capacity of LiCoO2 cathode by direct coating of the composite electrode with Li2CO3 via magnetron sputtering. J Phys Chem C 120(1):422–430. https://doi.org/10.1021/acs.jpcc.5b10677

    Article  CAS  Google Scholar 

  35. Li WT, Lucht BL (2006) Lithium-ion batteries: thermal reactions of electrolyte with the surface of metal oxide cathode particles. J Electrochem Soc 153(8):A1617–A1625. https://doi.org/10.1149/1.2210588

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 91534109), the “Strategic Priority Research Program” of the Chinese Academy of Sciences (No. XDA09010103), National Key Projects for Fundamental Research and Development of China (No. 2016YFB0100104), and International Partnership Program for Creative Research Teams (20140491518).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shimou Chen or Suojiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Dong, T., Fang, D. et al. A lithium salt additive Li2ZrF6 for enhancing the electrochemical performance of high-voltage LiNi0.5Mn1.5O4 cathode. Ionics 24, 2965–2972 (2018). https://doi.org/10.1007/s11581-018-2512-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2512-8

Keywords

Navigation