Log in

Aperiodic stochastic resonance in neural information processing with Gaussian colored noise

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

The aim of this paper is to explore the phenomenon of aperiodic stochastic resonance in neural systems with colored noise. For nonlinear dynamical systems driven by Gaussian colored noise, we prove that the stochastic sample trajectory can converge to the corresponding deterministic trajectory as noise intensity tends to zero in mean square, under global and local Lipschitz conditions, respectively. Then, following forbidden interval theorem we predict the phenomenon of aperiodic stochastic resonance in bistable and excitable neural systems. Two neuron models are further used to verify the theoretical prediction. Moreover, we disclose the phenomenon of aperiodic stochastic resonance induced by correlation time and this finding suggests that adjusting noise correlation might be a biologically more plausible mechanism in neural signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Averbeck BB, Latham PE, Pouget A (2006) Neural correlations, population coding and computation. Nat Rev Neurosci 7(5):358–366

    CAS  PubMed  Google Scholar 

  • Benzi R, Sutera A, Vulpiani A (1981) The mechanism of stochastic resonance. J Phys A 14(11):L453–L457

    Google Scholar 

  • Capurro A, Pakdaman K, Nomura T, Sato S (1998) Aperiodic stochastic resonance with correlated noise. Phys Rev E 58(4):4820–4827

    CAS  Google Scholar 

  • Collins JJ, Chow CC, Imhoff TT (1995) Aperiodic stochastic resonance in excitable systems. Phys Rev E 52(4):R3321–R3324

    CAS  Google Scholar 

  • Collins JJ, Chow CC, Capela AC, Imhoff TT (1996a) Aperiodic stochastic resonance. Phys Rev E 54(5):5575–5584

    CAS  Google Scholar 

  • Collins JJ, Imhoff TT, Grigg P (1996b) Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. J Neurophysiol 76(1):642–645

    CAS  PubMed  Google Scholar 

  • Cover TM, Thomas JA (1991) Elements of information theory. Wiley, New York

    Google Scholar 

  • Déli E, Tozzi A, Peters JF (2017) Relationships between short and fast brain timescales. Cogn Neurodyn 11(6):539–552

    PubMed  PubMed Central  Google Scholar 

  • Dylov DV, Fleischer JW (2010) Nonlinear self-filtering of noisy images via dynamical stochastic resonance. Nat Photon 4(5):323–328

    CAS  Google Scholar 

  • Floris C (2015) Mean square stability of a second-order parametric linear system excited by a colored Gaussian noise. J Sound Vib 336:82–95

    Google Scholar 

  • Freidlin MI, Wentzell AD, Tr. by Szuecs J (2012) Random perturbations of dynamical systems. Springer, Berlin

  • Fu YX, Kang YM, Chen GR (2020) Stochastic resonance based visual perception using spiking neural networks. Front Comput Neurosci 14:24

    PubMed  PubMed Central  Google Scholar 

  • Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 70(1):223–287

    CAS  Google Scholar 

  • Gao FY, Kang YM, Chen X, Chen GR (2018) Fractional Gaussian noise enhanced information capacity of a nonlinear neuron model with binary input. Phys Rev E 97(5):052142

    PubMed  Google Scholar 

  • Gu HG, Pan BB (2015) Identification of neural firing patterns, frequency and temporal coding mechanisms in individual aortic baroreceptors. Front Comput Neurosci 9:108

    PubMed  PubMed Central  Google Scholar 

  • Guan LN, Gu HG, Jia YB (2020) Multiple coherence resonances evoked from bursting and the underlying bifurcation mechanism. Nonlinear Dyn 100:3645–3666

    Google Scholar 

  • Guo DQ (2011) Inhibition of rhythmic spiking by colored noise in neural systems. Cogn Neurodyn 5(3):293–300

    PubMed  PubMed Central  Google Scholar 

  • Kang YM, Xu JX, **e Y (2005) Signal-to-noise ratio gain of a noisy neuron that transmits subthreshold periodic spike trains. Phys Rev E 72(2):021902

    Google Scholar 

  • Kim SY, Lim W (2018) Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network. Cogn Neurodyn 12(3):315–342

    PubMed  PubMed Central  Google Scholar 

  • Kosko B, Lee I, Mitaim S, Patel A, Wilde MM (2009) Applications of forbidden interval theorems in stochastic resonance. In: Applications of Nonlinear Dynamics. Springer, New York

  • Lee KE, Lopes MA, Mendes JFF, Goltsev AV (2014) Critical phenomena and noise-induced phase transitions in neuronal networks. Phys Rev E 89(1):012701

    Google Scholar 

  • Levin JE, Miller JP (1996) Broadband neural encoding in the cricket cereal sensory system enhanced by stochastic resonance. Nature 380(6570):165–168

    CAS  PubMed  Google Scholar 

  • Liu RN, Kang YM (2018) Stochastic resonance in underdamped periodic potential systems with alpha stable Lévy noise. Phys Lett A 382(25):1656–1664

    CAS  Google Scholar 

  • Liu J, Li Z (2015) Binary image enhancement based on aperiodic stochastic resonance. IET Image Process 9(12):1033–1038

    Google Scholar 

  • Lü Y, Lu H (2019) Anomalous dynamics of inertial systems driven by colored Lévy noise. J Stat Phys 176(4):1046–1056

    Google Scholar 

  • Mao XR (2007) Stochastic differential equations and applications, 2nd edn. Woodhead Publishing Limited, London

    Google Scholar 

  • Mao XR, Sababis S (2003) Numerical solutions of stochastic differential delay equations under local Lipschitz condition. J Comput Appl Math 151(1):215–227

    Google Scholar 

  • Mizraji E, Lin J (2017) The feeling of understanding: an exploration with neural models. Cogn Neurodyn 11(2):135–146

    PubMed  Google Scholar 

  • Nakamura O, Tateno K (2019) Random pulse induced synchronization and resonance in uncoupled non-identical neuron models. Cogn Neurodyn 13(3):303–312

    PubMed  PubMed Central  Google Scholar 

  • Øksendal B (2005) Stochastic differential equations: an introduction with applications, 6th edn. Springer, Berlin

    Google Scholar 

  • Patel A, Kosko B (2005) Stochastic resonance in noisy spiking retinal and sensory neuron models. Neural Netw 18(5–6):467–478

    PubMed  Google Scholar 

  • Patel A, Kosko B (2008) Stochastic resonance in continuous and spiking neuron models with Levy noise. IEEE Trans Neural Netw 19(12):1993–2008

    PubMed  Google Scholar 

  • Prato GD, Zabczyk J (1992) Stochastic equations in infinite dimensions. Cambridge University Press, Cambridge

    Google Scholar 

  • Sakai Y, Funahashi S, Shinomoto S (1999) Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons. Neural Netw 12(7–8):1181–1190

    CAS  PubMed  Google Scholar 

  • Song JL, Paixao L, Li Q, Li SH, Zhang R, Westover MB (2019) A novel neural computational model of generalized periodic discharges in acute hepatic encephalopathy. J Comput Neurosci 47(2–3):109–124

    PubMed  PubMed Central  Google Scholar 

  • Tiwari I, Phogat R, Parmananda P, Ocampo-Espindola JL, Rivera M (2016) Intrinsic periodic and aperiodic stochastic resonance in an electrochemical cell. Phys Rev E 94(2):022210

    PubMed  Google Scholar 

  • Wang HY, Wu YJ (2016) First-passage problem of a class of internally resonant quasi-integrable Hamiltonian system under wide-band stochastic excitations. Int J Nonlin Mech 85:143–151

    Google Scholar 

  • Wang RB, Wang GZ, Zheng JC (2014) An exploration of the range of noise intensity that affects the membrane potential of neurons. Abstr Appl Anal 2014:801642

    Google Scholar 

  • Xu Y, Guo YY, Ren GD, Ma J (2020) Dynamics and stochastic resonance in a thermosensitive neuron. Appl Math Comput 385(15):125427

    Google Scholar 

  • Yan CK, Wang RB, Pan XC (2013) A model of hippocampal memory based on an adaptive learning rule of synapses. J Biol Syst 21(03):1350016

    Google Scholar 

  • Yang T (1998) Adaptively optimizing stochastic resonance in visual system. Phys Lett A 245:79–86

    CAS  Google Scholar 

  • Zeng FG, Fu QJ, Morse R (2000) Human hearing enhanced by noise. Brain Res 869:251–255

    CAS  PubMed  Google Scholar 

  • Zhao J, Qin YM, Che YQ, Ran HYQ, Li JW (2020) Effects of network topologies on stochastic resonance in feedforward neural network. Cogn Neurodyn 14:399–409

    PubMed  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant No. 11772241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmei Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 1

Proof

Fix \(T \ge 0\) arbitrarily. The Ito formula (Øksendal 2005; Mao 2007) shows that

$$\begin{aligned} & \left| {u_{j} (t)} \right|^{2k} = \left| {u_{j} (0)} \right|^{2k} + \int_{0}^{t} {\left( { - \frac{2k}{\tau }\left| {u_{j} (s)} \right|^{2k} + k(2k - 1)\sigma^{2} \left| {u_{j} (s)} \right|^{2(k - 1)} } \right)ds} \\ & \quad + 2k\sigma \int_{0}^{t} {(u_{j} (s))^{2k - 1} } dW_{j} (s) \\ \end{aligned}$$

for \(0 \le t \le T\). By the moment property (3) of the stationary OU process, we get

$$E\left[ {\;\mathop {\sup }\limits_{0 \le t \le T} \left| {u_{j} (t)} \right|^{2k} } \right] \le \sigma^{2k} (2k - 1)!!(0.5\tau )^{k - 1} (0.5\tau + kT) + 2k\sigma E\left[ {\;\mathop {\sup }\limits_{0 \le t \le T} \int_{0}^{t} {(u_{j} (s))^{2k - 1} dW_{j} (s)} } \right]$$

By the Burkholder–Davis–Gundy inequality (Prato and Zabczyk 1992),

$$E\left[ {\;\mathop {\sup }\limits_{0 \le t \le T} \left| {u_{j} (t)} \right|^{2k} } \right] \le \sigma^{2k} (2k - 1)!!(0.5\tau )^{k - 1} (0.5\tau + kT) + 2\sqrt 3 k\sigma E\left[ {\left( {\int_{0}^{T} {\left| {u_{j} (s)} \right|^{4k - 2} ds} } \right)^{{\frac{1}{2}}} } \right].$$

Using the Hölder inequality we then derive

$$\begin{aligned} E\left[ {\;\mathop { \sup }\limits_{0 \le t \le T} \left| {u_{j} (t )} \right|^{2k} } \right] & \le \sigma^{2k} (2k - 1 )!! (0.5\tau )^{k - 1} (0.5\tau + kT )\\ & \quad + 2\sqrt 3 k\sigma \left( {\int_{0}^{T} {E\left[ {\;\left| {u_{j} (s )} \right|^{4k - 2} } \right]ds} } \right)^{{\frac{1}{2}}} \\ & \le \sigma^{2k} (2k - 1 )!! (0.5\tau )^{k - 1} (0.5\tau + kT )\\ & \quad + 2\sqrt 3 k\sigma \left( {T (4k - 3 )!! (0.5\tau \sigma^{2} )^{2k - 1} } \right)^{{\frac{1}{2}}} \\ & \le \sigma^{2k} \left( { (0.5\tau )^{k - 1} (0.5\tau + kT )+ 2k\sqrt {3T (4k - 3 )!! (0.5\tau )^{2k - 1} } } \right). \\ \end{aligned}$$

Proof of Lemma 2

Proof

It is well known that almost all sample paths of the Ornstein–Ulenbeck process are continuous. It is therefore easy to see from the classical theory of ordinary differential equations that for any initial value \(X_{0} \in R^{d}\), Eq. (1) has a unique global solution \(X_{t}\) on \(t \ge 0\). Fix \(T \ge 0\) arbitrarily. According to Lemma 1,

$$E\left[ {\;\mathop {\sup }\limits_{0 \le t \le T} \left| {u_{j} (t)} \right|^{2k} } \right] \le \sigma^{2k} \xi_{k}$$
(30)

with \(\xi_{k}\) given by Eq. (7).

Define the stop** times \(\tau_{h} = \inf \{ t \ge 0:\left| {X_{t} } \right| \ge h\}\) for all integers \(h > \left| {X_{0} } \right|\), where throughout this paper we set \(\inf \varPhi = \infty\). Here \(\varPhi\) stands for the empty set. Clearly, \(\tau_{h} \to \infty\) almost surely as \(h \to \infty\). For \(t \in \left[ {0,T} \right]\), it follows from Eq. (1a) that

$$\begin{aligned} \left| {X_{{t \wedge \tau_{h} }}^{i} } \right|^{p} & \le (m + 2)^{p - 1} \left( {\left| {X_{0}^{i} } \right|^{p} + \left| {\int_{0}^{{t \wedge \tau_{h} }} {f^{i} (X_{s} ,s)ds} } \right|^{p} + \sum\limits_{j = 1}^{m} {\left| {\int_{0}^{{t \wedge \tau_{h} }} {g_{j}^{i} (X_{s} ,s)u_{j} (s)ds} } \right|^{p} } } \right) \\ & \le (m + 2)^{p - 1} \left( {\left| {X_{0}^{i} } \right|^{p} + t^{p - 1} \int_{0}^{{t \wedge \tau_{h} }} {\left| {f^{i} (X_{s} ,s)} \right|^{p} ds} + t^{p - 1} \sum\limits_{j = 1}^{m} {\int_{0}^{{t \wedge \tau_{h} }} {\left| {g_{j}^{i} (X_{s} ,s)u_{j} (s)} \right|^{p} ds} } } \right) \\ & \le (m + 2)^{p - 1} \left( {\left| {X_{0}^{i} } \right|^{p} + t^{p - 1} \int_{0}^{t} {\left| {f^{i} \left( {X_{{s \wedge \tau_{h} }} ,s \wedge \tau_{h} } \right)} \right|^{p} ds} + t^{p - 1} \sum\limits_{j = 1}^{m} {\int_{0}^{t} {\left| {g_{j}^{i} \left( {X_{{s \wedge \tau_{h} }} ,s \wedge \tau_{h} } \right)u_{j} (s \wedge \tau_{h} )} \right|^{p} ds} } } \right) \\ & \le (m + 2)^{p - 1} \left( {\left| {X_{0}^{i} } \right|^{p} + t^{p - 1} K^{p} \int_{0}^{t} {\left( {1 + X_{{s \wedge \tau_{h} }} } \right)^{p} ds} + t^{p - 1} K^{p} \sum\limits_{j = 1}^{m} {\int_{0}^{t} {\left( {1 + \left| {X_{{s \wedge \tau_{h} }} } \right|^{\gamma } } \right)^{p} \left| {u_{j} (s \wedge \tau_{h} )} \right|^{p} ds} } } \right) \\ & \le (m + 2)^{p - 1} \left( {\left| {X_{0}^{i} } \right|^{p} + t^{p - 1} 2^{p - 1} K^{p} \int_{0}^{t} {\left( {1 + \left| {X_{{s \wedge \tau_{h} }} } \right|^{p} } \right)ds} + t^{p - 1} 2^{p - 1} K^{p} \sum\limits_{j = 1}^{m} {\int_{0}^{t} {\left( {1 + \left| {X_{{s \wedge \tau_{h} }} } \right|^{p\gamma } } \right)\left| {u_{j} (s \wedge \tau_{h} )} \right|^{p} ds} } } \right) \\ \end{aligned}$$

Here, the first inequality is due to \((a_{1} + \cdots + a_{m} )^{p} \le m^{p - 1} (\left| {a_{1} } \right|^{p} + \cdots + \left| {a_{m} } \right|^{p} )\), the second inequality is owing to the Hölder inequality; the growth conditions are adopted for the last second equality; and the inequality \((\left| a \right| + \left| b \right| )^{p} \le 2^{p - 1} (\left| a \right|^{p} + \left| b \right|^{p} )\) is used in the last inequality. As the right-hand-side terms are increasing in \(t\), we see easily that

$$\begin{aligned} & E\left[ {\;\mathop {\sup }\limits_{0 \le s \le t} \left| {X_{{s \wedge \tau_{h} }}^{i} } \right|^{p} } \right] \le (m + 2)^{p - 1} \left( {\left| {X_{0}^{i} } \right|^{p} + T^{p - 1} 2^{p - 1} K^{p} \times}\right.\\&\quad \left.{\int_{0}^{t} {\left( {1 + E\left[ {\;\left| {X_{{s \wedge \tau_{h} }} } \right|^{p} } \right]} \right)ds} } \right) + (m + 2)^{p - 1} T^{p - 1} 2^{p - 1} K^{p}\times\\ & \quad \sum\limits_{j = 1}^{m} {\int_{0}^{t} {E\left[ {\;\left( {1 + \left| {X_{{s \wedge \tau_{h} }} } \right|^{p\gamma } } \right)\left| {u_{j} (s \wedge \tau_{h} )} \right|^{p} } \right]ds} } \\ \end{aligned}$$

and then by \(\left| {X_{ 0}^{i} } \right|^{p} = \left( {\left| {X_{ 0}^{i} } \right|^{ 2} } \right)^{{\frac{p}{2}}} \le \left( {\sum\limits_{i = 1}^{d} {\left| {X_{ 0}^{i} } \right|^{ 2} } } \right)^{{\frac{p}{2}}} = \left| {X_{0} } \right|^{p} ,\)

$$\begin{aligned} & E\left[ {\;\mathop {\sup }\limits_{0 \le s \le t} \left| {X_{{s \wedge \tau_{h} }}^{i} } \right|^{p} } \right] \le (m + 2)^{p - 1} \left( {\left| {X_{0} } \right|^{p} + T^{p - 1} 2^{p - 1} K^{p} \times}\right.\\&\quad\left.{\int_{0}^{t} {\left( {1 + E\left[ {\;\mathop {\sup }\limits_{0 \le r \le s} \left| {X_{{r \wedge \tau_{h} }} } \right|^{p} } \right]} \right)ds} } \right) \\ & \quad + (m + 2)^{p - 1} T^{p - 1} 2^{p - 1} K^{p} \sum\limits_{j = 1}^{m} \\&\quad{\int_{0}^{t} {E\left[ {\;\left( {1 + \mathop {\sup }\limits_{0 \le r \le s} \left| {X_{{r \wedge \tau_{h} }} } \right|^{p\gamma } } \right)\mathop {\sup }\limits_{0 \le r \le s} \left| {u_{j} (r \wedge \tau_{h} )} \right|^{p} } \right]ds} } \\ \end{aligned}$$

By the well-known Young inequality \(xy \le \frac{{x^{p} }}{p} + \frac{{y^{q} }}{q}\) for \(x,y \ge 0\) and \(p,q > 0\) with \(\frac{1}{p} + \frac{1}{q} = 1\),

$$\begin{aligned} & E\left[ {\;\mathop {\sup }\limits_{0 \le r \le s} \left| {X_{{r \wedge \tau_{h} }} } \right|^{p\gamma } \mathop {\sup }\limits_{0 \le r \le s} \left| {u_{j} (r \wedge \tau_{h} )} \right|^{p} } \right] \le \gamma E\left[ {\mathop {\sup }\limits_{0 \le r \le s} \left| {X_{{r \wedge \tau_{h} }} } \right|^{p} } \right] \\ & \quad \quad + (1 - \gamma )E\left[ {\;\mathop {\sup }\limits_{0 \le r \le s} \left| {u_{j} (r \wedge \tau_{h} )} \right|^{{\frac{p}{1 - \gamma }}} } \right] \\ & \quad \le E\left[ {\mathop {\sup }\limits_{0 \le r \le s} \left| {X_{{r \wedge \tau_{h} }} } \right|^{p} } \right] + E\left[ {\;\mathop {\sup }\limits_{0 \le r \le s} \left| {u_{j} (r \wedge \tau_{h} )} \right|^{{\frac{p}{1 - \gamma }}} } \right] \\ \end{aligned}$$

while recalling that \(\bar{k} \ge \frac{p}{2(1 - \gamma )}\) in Eq. (13), then by the Hölder inequality,

$$\begin{aligned} & E\left[ {\;\mathop {\sup }\limits_{0 \le r \le s} \left| {u_{j} (r \wedge \tau_{h} )} \right|^{{\frac{p}{1 - \gamma }}} } \right] \le E\left[ {\;\mathop {\sup }\limits_{0 \le r \le s} \left| {u_{j} (r \wedge \tau_{h} )} \right|^{{ 2\bar{k}}} } \right]^{{\frac{p}{{2(1 - \gamma )\bar{k}}}}} \\ & \quad \le E\left[ {\;\mathop {\sup }\limits_{0 \le r \le T} \left| {u_{j} (r \wedge \tau_{h} )} \right|^{{ 2\bar{k}}} } \right]^{{\frac{p}{{2(1 - \gamma )\bar{k}}}}} \\ \end{aligned}$$

Hence, by Eq. (30),

$$\begin{aligned} & E\left[ {\;\mathop {\sup }\limits_{0 \le s \le t} \left| {X_{{s \wedge \tau_{h} }}^{i} } \right|^{p} } \right] \le (m + 2)^{p - 1} \\ & \quad (\left| {X_{0} } \right|^{p} + T^{p - 1} 2^{p - 1} K^{p} \left( {1 + m\sigma^{p} \xi_{p}^{{\frac{1}{2}}} + m\sigma^{{\frac{p}{1 - \gamma }}} \xi_{{\bar{k}}}^{{\frac{p}{{2(1 - \gamma )\bar{k}}}}} } \right) \\ & \quad + (m + 2)^{p - 1} T^{p - 1} 2^{p - 1} K^{p} (m + 1)\int_{0}^{t} {E\left[ {\;\mathop {\sup }\limits_{0 \le r \le s} \left| {X_{{r \wedge \tau_{h} }} } \right|^{p} } \right]ds} \\ \end{aligned}$$

Considering

$$\begin{aligned} \mathop {\sup }\limits_{0 \le s \le t} \left| {X_{{s \wedge \tau_{h} }} } \right|^{p} & = \mathop {\sup }\limits_{0 \le s \le t} \left( {\sum\limits_{i = 1}^{d} {\left| {X_{{s \wedge \tau_{h} }}^{i} } \right|^{2} } } \right)^{{\frac{p}{2}}} \le \left( {d\mathop {\hbox{max} }\limits_{1 \le i \le d} \mathop {\sup }\limits_{0 \le s \le t} \left| {X_{{s \wedge \tau_{h} }}^{i} } \right|^{2} } \right)^{{\frac{p}{2}}} \\ & = d^{{^{{\frac{p}{2}}} }} \mathop {\hbox{max} }\limits_{1 \le i \le d} \mathop {\sup }\limits_{0 \le s \le t} \left| {X_{{s \wedge \tau_{h} }}^{i} } \right|^{p} , \\ \end{aligned}$$

then

$$E\left[ {\mathop {\sup }\limits_{0 \le s \le t} \left| {X_{{s \wedge \tau_{h} }} } \right|^{p} } \right] \le d^{{^{{\frac{p}{2}}} }} E\left[ {\mathop {\hbox{max} }\limits_{1 \le i \le d} \mathop {\sup }\limits_{0 \le s \le t} \left| {X_{{s \wedge \tau_{h} }}^{i} } \right|^{p} } \right] \le d^{{^{{\frac{p}{2} + 1}} }} \mathop {\hbox{max} }\limits_{1 \le i \le d} E\left[ {\mathop {\sup }\limits_{0 \le s \le t} \left| {X_{{s \wedge \tau_{h} }}^{i} } \right|^{p} } \right].$$

Here, the distribution property for the maximum of multiple mutually independent random variables is adopted. Then for any \(0 \le t \le T\),

$$E\left[ {\mathop {\sup }\limits_{0 \le s \le t} \left| {X_{{s \wedge \tau_{h} }} } \right|^{p} } \right] \le a_{p} + b_{p} \int_{0}^{t} {E\left[ {\mathop {\sup }\limits_{0 \le r \le s} \left| {X_{{r \wedge \tau_{h} }} } \right|^{p} } \right]} ds$$
(31)

with \(a_{p}\) and \(b_{p}\) given in Eqs. (11) and (12). And then, the application of the Gronwall inequality to Eq. (31) yields

$$E\left[ {\mathop {\sup }\limits_{0 \le s \le T} \left| {X_{{s \wedge \tau_{h} }} } \right|^{p} } \right] \le a_{p} \exp (b_{p} T) < \infty$$

Letting \(h \to \infty\) implies the required assertion (10). □

Proof of Lemma 3

Proof

Note the inequality (15) can be proven with technique somehow parallel to that of Lemma 2. It is well known that under given conditions Eq. (3) has a unique global solution \(\hat{X}_{t}\) on \(t \ge 0\). Define a sequence \(v_{h} = \inf \{ t \ge 0:\left| {\hat{X}_{t} } \right| \ge h\}\) for all integers \(h \ge \left| {X_{0} } \right|\), with \(\inf \varPhi = \infty\) for an empty set \(\varPhi\). Clearly, \(v_{h} \to \infty\) almost surely as \(h \to \infty\). For \(t \in \left[ {0,T} \right]\), it can be deduced from (3) that for \(0 < t < T\),

$$\mathop {\sup }\limits_{0 \le s \le t} \left| {\hat{X}_{{s \wedge v_{h} }} } \right|^{p} \le d^{{\frac{p}{2}}} (2^{p - 1} \left| {X_{0} } \right|^{p} + T^{p} 2^{2(p - 1)} K^{p} ) + T^{p - 1} 2^{2(p - 1)} d^{{\frac{p}{2}}} K^{p} \int_{0}^{t} {\mathop {\sup }\limits_{0 \le r \le s} \left| {\hat{X}_{{r \wedge v_{h} }} } \right|^{p} ds}$$

Then, the Gronwall inequality implies

$$\mathop {\sup }\limits_{0 \le s \le t} \left| {\hat{X}_{{s \wedge v_{h} }} } \right|^{p} \le d^{{\frac{p}{2}}} (2^{p - 1} \left| {X_{0} } \right|^{p} + T^{p} 2^{2(p - 1)} K^{p} )\exp \left( {2^{2(p - 1)} d^{{\frac{p}{2}}} T^{p} } \right)$$

Letting \(h \to \infty\) implies the assertion (15) immediately. □

Proof of Lemma 4

Proof

Recalling the duplicate property of the conditional probability distribution

$$E\left[ {E\left[ {\mathop {\sup }\limits_{0 \le t \le T} \left| {X_{t} - \hat{X}_{t} } \right|^{2} \left| {S = s_{1} } \right.} \right]} \right] = E\left[ {\mathop {\sup }\limits_{0 \le t \le T} \left| {X_{t} - \hat{X}_{t} } \right|^{2} } \right],$$

we obtain

$$\begin{aligned} &E\left[ {\mathop {\sup }\limits_{0 \le t \le T} \left| {X_{t} - \hat{X}_{t} } \right|^{2} } \right]\\& = P\left\{ {S = s_{1} } \right\}E\left[ {\mathop {\sup }\limits_{0 \le t \le T} \left| {X_{t} - \hat{X}_{t} } \right|^{2} \left| {S = s_{1} } \right.} \right]\\& \quad+ P\left\{ {S = s_{2} } \right\}E\left[ {\mathop {\sup }\limits_{0 \le t \le T} \left| {X_{t} - \hat{X}_{t} } \right|^{2} \left| {S = s_{2} } \right.} \right],\end{aligned}$$

from which it can be deduced that

$$E\left[ {\mathop {\sup }\limits_{0 \le t \le T} \left| {X_{t} - \hat{X}_{t} } \right|^{2} \left| {S = s_{i} } \right.} \right] \le \frac{1}{{P\left\{ {S = s_{i} } \right\}}}E\left[ {\mathop {\sup }\limits_{0 \le t \le T} \left| {X_{t} - \hat{X}_{t} } \right|^{2} } \right],$$

and thus by Theorem 2, Eq. (25) is found true. Then, application of Markov’s inequality immediately gives Eq. (26). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Liu, R. & Mao, X. Aperiodic stochastic resonance in neural information processing with Gaussian colored noise. Cogn Neurodyn 15, 517–532 (2021). https://doi.org/10.1007/s11571-020-09632-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-020-09632-3

Keywords

Navigation