Log in

Reflections on a giant of brain science

How lucky we are having Walter J. Freeman as our beacon in cognitive neurodynamics research

  • Review Paper
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Walter J. Freeman was a giant of the field of neuroscience whose visionary work contributed various experimental and theoretical breakthroughs to brain research in the past 60 years. He has pioneered a number of Electroencephalogram and Electrocorticogram tools and approaches that shaped the field, while “Freeman Neurodynamics” is a theoretical concept that is widely known, used, and respected among neuroscientists all over the world. His recent death is a profound loss to neuroscience and biomedical engineering. Many of his revolutionary ideas on brain dynamics have been ahead of their time by decades. We summarize his following groundbreaking achievements: (1) Mass Action in the Nervous System, from microscopic (single cell) recordings, through mesoscopic populations, to large-scale collective brain patterns underlying cognition; (2) Freeman–Kachalsky model of multi-scale, modular brain dynamics; (3) cinematic theory of cognitive dynamics; (4) phase transitions in cortical dynamics modeled with random graphs and quantum field theory; (5) philosophical aspects of intentionality, consciousness, and the unity of brain–mind–body. His work has been admired by many of his neuroscientist colleagues and followers. At the same time, his multidisciplinary approach combining advanced concepts of control theory and the mathematics of nonlinear systems and chaos, poses significant challenges to those who wish to thoroughly understand his message. The goal of this commemorative paper is to review key aspects of Freeman’s neurodynamics and to provide some handles to gain better understanding about Freeman’s extraordinary intellectual achievement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aihara K, Takabe T, Toyoda M (1990) Chaotic neural network. Phys Lett A 144:333–340

    Article  Google Scholar 

  • Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Article  Google Scholar 

  • Aquinas ST (1272) “The Summa Theologica.” Translated by Fathers of the English Dominican Province. Revised by Daniel J Sullivan. Published by William Benton as Volume 19 in the Great Books Series. Chicago: Encyclopedia Britannica, Inc., 1952

  • Barrie JM, Freeman WJ, Lenhart MD (1996) Spatiotemporal analysis of prepyriform, visual, auditory, and somesthetic surface EEGs in trained rabbits. J Neurophysiol 76(1):520–539

    CAS  PubMed  Google Scholar 

  • Bollobas B, Riordan O (2006) Percolation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Borisyuk RM, Borisyuk GN (1997) Information coding on the basis of synchronization neuronal activity. Biosystems 40(1–2):3–10

    Article  CAS  PubMed  Google Scholar 

  • Bressler SL, Kelso JAS (2001) Cortical coordination dynamics and cognition. Trends Cognit Sci 5:2–36

    Article  Google Scholar 

  • Capolupo A, Freeman WJ, Vitiello G (2013) Dissipation of ‘dark energy’by cortex in knowledge retrieval. Phys Life Rev 10(1):85–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang HJ, Freeman WJ (1996) Parameter optimization in models of the olfactory neural system. Neural Netw 9(1):1–14

    Article  Google Scholar 

  • Davis JJJ, Kozma R, Freeman WJ (2013) Neurophysiological evidence of the cognitive cycle and the emergence of awareness. In: IEEE 2013 international joint conference on awareness science and technology and ubi-media computing (iCAST-UMEDIA), pp 149–157

  • Dreyfus HL (1993) Heidegger’s critique of the Husserl/Searle account of intentionality. Soc Res 60(1):17–38

    Google Scholar 

  • Dreyfus HL (2007) Why Heideggerian AI failed and how fixing it would require making it more Heideggerian. Philos Psychol 20(2):247–268

    Article  Google Scholar 

  • Freeman WJ (1975/2004) Mass action in the nervous system. Academic Press, New York. http://sulcus.berkeley.edu/MANSWWW/MANSWWW.html

  • Freeman WJ (1987) Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybern 56(2–3):139–150

    Article  CAS  PubMed  Google Scholar 

  • Freeman WJ (1991) The physiology of perception. Sci Am 264(2):78–85

  • Freeman WJ (1992) Tutorial on neurobiology: from single neurons to brain chaos. Int J Bifurc Chaos 2(03):451–482

    Article  Google Scholar 

  • Freeman WJ (1995) Societies of brains: a study in the neuroscience of love and hate. Psychology Press, Milton Park

    Google Scholar 

  • Freeman WJ (1997) Three centuries of category errors in studies of the neural basis of consciousness and intentionality. Neural Netw 10(7):1175–1183

    Article  PubMed  Google Scholar 

  • Freeman WJ (2000a) How brains make up their minds. Columbia University Press, New York

    Google Scholar 

  • Freeman WJ (2000b) Neurodynamics: an exploration in mesoscopic brain dynamic. Springer, London

    Book  Google Scholar 

  • Freeman WJ (2003) The wave packet: an action potential for the 21st century. J Integr Neurosci 2(01):3–30

    Article  PubMed  Google Scholar 

  • Freeman WJ (2004a) Origin, structure, and role of background EEG activity. Part 1. Analytic amplitude. Clin Neurophysiol 115:2077–2088

    Article  PubMed  Google Scholar 

  • Freeman WJ (2004b) Origin, structure, and role of background EEG activity. Part 2. Analytic phase. Clin Neurophysiol 115:2089–2107

    Article  PubMed  Google Scholar 

  • Freeman WJ (2005) Origin, structure, and role of background EEG activity. Part 3. Neural frame classification. Clin Neurophysiol 116(5):1118–1129

    Article  PubMed  Google Scholar 

  • Freeman WJ (2006a) Origin, structure, and role of background EEG activity. Part 4. Neural frame simulation. Clin Neurophysiol 117(3):572–589

    Article  PubMed  Google Scholar 

  • Freeman WJ (2006b) A cinematographic hypothesis of cortical dynamics in perception. Int J Psychophysiol 60(2):149–161

    Article  PubMed  Google Scholar 

  • Freeman WJ (2007) My legacy: a launch pad for exploring neocortex. In: Keynote talk at the 2007 NSF brain network dynamics conference. Berkeley. https://archive.org/details/Brain_Network_Dynamics_2007-03_Walter_freeman. Accessed on 26–27 Jan 2007

  • Freeman WJ (2008) A pseudo-equilibrium thermodynamic model of information processing in nonlinear brain dynamics. Neural Netw 21:257–265

    Article  PubMed  Google Scholar 

  • Freeman WJ (2009) The neurobiological infrastructure of natural computing: intentionality. New Math Natural Comput 5(01):19–29

    Article  Google Scholar 

  • Freeman WJ (2015) Mechanism and significance of global coherence in scalp EEG. Curr Opin Neurobiol 31:199–205

    Article  CAS  PubMed  Google Scholar 

  • Freeman WJ (2016) What neural correlates of consciousness can tell us about its properties? Plenary talk (cancelled), the science of consciousness conference (TSC’16). Tucson. Accessed on 26 April 2016

  • Freeman WJ, Barrie JM (2000) Analysis of spatial patterns of phase in neocortical gamma eegs in rabbit. J Neurophysiol 84:1266–1278

    CAS  PubMed  Google Scholar 

  • Freeman WJ, Cao Y (2008) Proposed renormalization group analysis of nonlinear brain dynamics at criticality Chapter 27. In: Wang R et al (eds) Advances in cognitive neurodynamics ICCN 2007. Springer, Heidelberg, pp 147–158

    Google Scholar 

  • Freeman III WJ (2009) Nonlinear dynamics and intention according to Aquinas. Mind Matter 6(2)

  • Freeman WJ, Quian-Quiroga R (2013) Imaging brain function with EEG. Springer, New York

    Book  Google Scholar 

  • Freeman W, Rogers L (2002) Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in gamma EEGs. J Neurophysiol 87(2):937–945

    PubMed  Google Scholar 

  • Freeman WJ, Vitiello G (2006) Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics. Phys Life Rev 3:93–118

    Article  Google Scholar 

  • Freeman WJ, Rogers LJ, Holmes MD, Silbergeld DL (2000) Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands. J Neurosci Methods 95(2):111–121

    Article  CAS  PubMed  Google Scholar 

  • Freeman WJ, Burke BC, Holmes MD (2003a) Aperiodic phase re-setting in scalp EEG of beta–gamma oscillations by state transitions at alpha–theta rates. Hum Brain Mapp 19(4):248–272

    Article  PubMed  Google Scholar 

  • Freeman WJ, Burke BC, Holmes MD, Vanhatalo S (2003b) Spatial spectra of scalp EEG and EMG from awake humans. Clin Neurophysiol 114:1055–1060

    Article  Google Scholar 

  • Freeman WJ, Kozma R, Bollobas B, Riordan O (2009) Scale-free cortical planar graphs. In: Bollobas B, Kozma R, Miklos D (eds) Handbook of large-scale random networks: Bolyai-Springer series on advanced combinatorics. Springer, New York

    Google Scholar 

  • Fulton JF (1938) Physiology of the nervous system. Oxford University Press, London

    Google Scholar 

  • Gladwell M (2007) Blink: the power of thinking without thinking. Back Bay Books, New York

    Google Scholar 

  • Haken H (1983) Synergetics: an introduction. Springer, Berlin

    Book  Google Scholar 

  • Harter D, Kozma R (2005) Chaotic neurodynamics for autonomous agents. IEEE Trans Neural Netw 16(3):565–579

    Article  PubMed  Google Scholar 

  • Heidegger M (1975/1988) The basic problems of phenomenology [rev. ed.]. Hofstadter A [trans.] Indiana UP, Bloomington

  • Ilin R, Kozma R (2006) Stability of coupled excitatory-inhibitory neural populations application to control multistable systems. Phys Lett A 360:66–83

    Article  CAS  Google Scholar 

  • Katchalsky A, Rowland V, Blumenthal R (1974) Dynamic patterns of brain cell assemblies. MIT Press, Cambridge

  • Kay LM, Freeman WJ (1998) Bidirectional processing in the olfactory-limbic axis during olfactory behavior. Behav Neurosci 112(3):541

    Article  CAS  PubMed  Google Scholar 

  • Kelso JAS (1995) Dynamic patterns: the self organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  • Kozma R, Freeman WJ (2001) Chaotic resonance—methods and applications for robust classification of noisy and variable patterns. Int J Bifurc Chaos 11(06):1607–1629

    Article  Google Scholar 

  • Kozma R, Freeman WJ (2003) Basic principles of the KIV model and its application to the navigation problem. J Integr Neurosci 2(1):125–146

    Article  PubMed  Google Scholar 

  • Kozma R, Freeman WJ (2014) On neural substrates of cognition: theory, experiments and application in brain computer interfaces. In: Proceedings of the 2014 annals oak ridge national laboratory biomedical science and engineering center conference (BSEC2014). IEEE Press, pp 1–4

  • Kozma R, Freeman WJ (2015) Cognitive phase transitions in the cerebral cortex-enhancing the neuron doctrine by modeling neural fields. Springer, Heidelberg

    Google Scholar 

  • Kozma R, Puljic M (2015) Random graph theory and neuropercolation for modeling brain oscillations at criticality. Curr Opin Neurobiol 31:181–188

    Article  CAS  PubMed  Google Scholar 

  • Kozma R, Freeman WJ, Erdi P (2003) The KIV model: nonlinear spatio-temporal dynamics of the primordial vertebrate forebrain. Neurocomputing 52:819–826

    Article  Google Scholar 

  • Kozma R, Puljic M, Balister P, Bollobas B, Freeman WJ (2005) Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol Cybern 92(6):367–379

    Article  PubMed  Google Scholar 

  • Kozma R, Aghazarian H, Huntsberger T, Tunstel E, Freeman WJ (2007) Computational aspects of cognition and consciousness in intelligent devices. IEEE Comput Intell Mag 2(3):53–64

    Article  Google Scholar 

  • Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 9:194–208

    Article  Google Scholar 

  • Le Van Quyen M (2003) Disentangling the dynamic core: a research program for a neurodynamics at the large-scale. Biol Res 36:67–88

    Google Scholar 

  • Marcus G, Koch C (2014) The future of brain implants: How soon can we expect to see brain implants for perfect memory, enhanced vision, hypernormal focus or an expert golf swing? Wall Street Journal, Saturday Essay. 14 March 2014

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133

    Article  Google Scholar 

  • Merleau-Ponty M (1942/1963) The structure of behavior. Fischer AL [trans]. Boston, Beacon

  • Núñez R, Freeman WJ (1999) Reclaiming cognition. The primacy of action, intention and emotion. Thorverten: Imprint Academic

  • Ohl FW, Scheich H, Freeman WJ (2001) Change in pattern of ongoing cortical activity with auditory category learning. Nature 412(6848):733–736

    Article  CAS  PubMed  Google Scholar 

  • Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization: a universal concept in non-linear sciences. Cambridge UP, Cambridge

    Book  Google Scholar 

  • Pockett S, Bold GE, Freeman WJ (2009) EEG synchrony during a perceptual cognitive task: widespread phase synchrony at all frequencies. Clin Neurophysiol 120:695–708

    Article  PubMed  Google Scholar 

  • Pribram KH (1969) The neurophysiology of remembering. Sci Am 220(1):73–86

    Article  CAS  PubMed  Google Scholar 

  • Pribram KH (2013) The form within. My point of view. Prospecta Press, Westport

    Google Scholar 

  • Prigogine I (1980) From being to becoming: time and complexity in the physical sciences. San Francisco. W. H. Freeman

  • Puljic M, Kozma R (2008) Narrow band oscillations in probabilistic cellular automata. Phys Rev E 78:026214

    Article  CAS  Google Scholar 

  • Quiroga QR, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single-neurons in the human brain. Nature 435:1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Ruiz Y, Pockett S, Freeman WJ, Gonzalez E, Li G (2010) A method to study global spatial patterns related to sensory perception in scalp EEG. J Neurosci Methods 191(1):110–118

    Article  PubMed  Google Scholar 

  • Skarda CA, Freeman WJ (1987) How brains make chaos in order to make sense of the world. Behav Brain Sci 10(2):161–195

    Article  Google Scholar 

  • Stam CJ, Breakspear M, van Cappellen AMVC, van Dijk BW (2003) Nonlinear synchronization in EEG and whole-head recordings of healthy subjects. Hum Brain Mapp 19:63–78

    Article  PubMed  Google Scholar 

  • Tognoli E, Kelso JAS (2014) The metastable brain. Neuron 81(1):35–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda I (2001) Toward an interpretation of dynamics neural activity in terms of chaotic dynamical systems. Behav Brain Sci 24:793–847

    Article  CAS  PubMed  Google Scholar 

  • Umezawa H (1995) Development in concepts in quantum field theory in half century. Math Jpn 41(1995):109–124

    Google Scholar 

  • Viana Di Prisco G, Freeman WJ (1985) Odor-related bulbar EEG spatial pattern analysis during appetitive conditioning in rabbits. Behav Neurosci 99:962–978

    Article  Google Scholar 

  • Vitiello G (2009) Coherent states, fractals and brain waves. New Math Nat Comput 5:245–264

    Article  Google Scholar 

  • Von Neumann J (1958) The computer and the brain. Yale UP

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  • Werner G (2009) Consciousness related neural events viewed as brain state space transitions. Cognit Neurodyn 3(1):83–95

    Article  Google Scholar 

  • Werner G (2013) Consciousness viewed in the framework of brain phase space dynamics, criticality, and the renormalization group. Chaos, Solitons Fractals 55:3–12

    Article  Google Scholar 

  • Xu D, Principe JC (2004) Dynamical analysis of neural oscillators in an olfactory cortex model. IEEE Trans Neural Netw 15(5):1053–1062

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This review covers the extensive collective work, which involves Walter Freeman’s collaborators. I was fortunate to work and interact with many of them, and I appreciate all their support through those years. This work has been supported in part by Grant NSF-DMS-13-11165.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kozma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozma, R. Reflections on a giant of brain science. Cogn Neurodyn 10, 457–469 (2016). https://doi.org/10.1007/s11571-016-9403-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-016-9403-3

Keywords

Navigation