Log in

Finite element model of the impaction of a press-fitted acetabular cup

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Press-fit surgical procedures aim at providing primary stability to acetabular cup (AC) implants. Impact analysis constitutes a powerful approach to retrieve the AC implant insertion properties. The aim of this numerical study was to investigate the dynamic interaction occurring between the hammer, the ancillary and bone tissue during the impact and to assess the potential of impact analysis to retrieve AC implant insertion conditions. A dynamic two-dimensional axisymmetric model was developed to simulate the impaction of the AC implant into bone tissue assuming friction at the bone–implant interface and large deformations. Different values of interference fit (from 0.5 to 2 mm) and impact velocities (from 1 to 2 m.s−1) were considered. For each configuration, the variation of the force applied between the hammer and the ancillary was analyzed and an indicator I was determined based on the impact momentum of the signal. The simulated results are compared to the experiments. The value of the polar gap decreases with the impact velocity and increases with the interference fit. The bone–implant contact area was significantly correlated with the resonance frequency (R 2 = 0.94) and the indicator (R 2 = 0.95). The results show the potential of impact analyses to retrieve the bone–implant contact properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Adler E, Stuchin SA, Kummer FJ (1992) Stability of press-fit acetabular cups. J Arthroplasty 7:295–301

    Article  CAS  PubMed  Google Scholar 

  2. Baghdadi YM, Larson AN, Sierra RJ (2014) Long-term results of the uncemented acetabular component in a primary total hip arthroplasty performed for protrusio acetabuli: a fifteen year median follow-up. Int Orthop

  3. Baleani M, Fognani R, Toni A (2001) Initial stability of a cementless acetabular cup design: experimental investigation on the effect of adding fins to the rim of the cup. Artif Organs 25:664–669

    Article  CAS  PubMed  Google Scholar 

  4. Bone MC, Dold P, Flohr M, Preuss R, Joyce TJ, Deehan D et al (2013) A novel method for measuring acetabular cup deformation in cadavers. Proc Inst Mech Eng H 227:1341–1344

    Article  PubMed  Google Scholar 

  5. Carlsson L, Rostlund T, Albrektsson B, Albrektsson T (1988) Implant fixation improved by close fit. Cylindrical implant-bone interface studied in rabbits. Acta Orthop Scand 59(3):272–275

    Article  CAS  PubMed  Google Scholar 

  6. Curtis MJ, **nah RH, Wilson VD, Hungerford DS (1992) The initial stability of uncemented acetabular components. J Bone Jt Surg-Br 74:372–376

    CAS  Google Scholar 

  7. Fehring KA, Owen JR, Kurdin AA, Wayne JS, Jiranek WA (2014) Initial stability of press-fit acetabular components under rotational forces. J Arthroplasty 29:1038–1042

    Article  PubMed  Google Scholar 

  8. Ghosh R, Gupta S, Dickinson A, Browne M (2012) Experimental validation of finite element models of intact and implanted composite hemipelvises using digital image correlation. J Biomech Eng 134:081003

    Article  PubMed  Google Scholar 

  9. Hothi HS, Busfield JJ, Shelton JC (2011) Explicit finite element modelling of the impaction of metal press-fit acetabular components. Proc Inst Mech Eng H 225:303–314

    CAS  PubMed  Google Scholar 

  10. Hsu JT, Chang CH, Huang HL, Zobitz ME, Chen WP, Lai KA et al (2007) The number of screws, bone quality, and friction coefficient affect acetabular cup stability. Med Eng Phys 29:1089–1095

    Article  PubMed  Google Scholar 

  11. Hsu JT, Lai KA, Chen Q, Zobitz ME, Huang HL, An KN et al (2006) The relation between micromotion and screw fixation in acetabular cup. Comput Methods Progr Biomed 84:34–41

    Article  Google Scholar 

  12. Janssen D, Zwartele RE, Doets HC, Verdonschot N (2010) Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties. Proc Inst Mech Eng H 224:67–75

    Article  CAS  PubMed  Google Scholar 

  13. ** ZM, Meakins S, Morlock MM, Parsons P, Hardaker C, Flett M et al (2006) Deformation of press-fitted metallic resurfacing cups. Part 1: experimental simulation. Proc Inst Mech Eng H 220:299–309

    Article  Google Scholar 

  14. Lin HC, Chi WM, Ho YJ, Chen JH (2013) Effects of design parameters of total hip components on the im**ement angle and determination of the preferred liner skirt shape with an adequate oscillation angle. Med Biol Eng Comput 51:397–404

    Article  PubMed  Google Scholar 

  15. MacKenzie JR, Callaghan JJ, Pedersen DR, Brown TD (1994) Areas of contact and extent of gaps with implantation of oversized acetabular components in total hip arthroplasty. Clin Orthop Relat Res 298:127–136

    Google Scholar 

  16. Mathieu V, Michel A, Flouzat Lachaniette CH, Poignard A, Hernigou P, Allain J et al (2013) Variation of the impact duration during the in vitro insertion of acetabular cup implants. Med Eng Phys 35:1558–1563

    Article  PubMed  Google Scholar 

  17. Michel A, Bosc R, Mathieu V, Hernigou P, Haiat G (2014) Monitoring the press-fit insertion of an acetabular cup by impact measurements: influence of bone abrasion. Proc Inst Mech Eng H 228:1027–1034

    Article  PubMed  Google Scholar 

  18. Michel A, Bosc R, Vayron R, Haiat G (2015) In vitro evaluation of the acetabular cup primary stability by impact analysis. J Biomech Eng 137:031011

    Article  Google Scholar 

  19. Michel A, Bosc R, Vayron R, Haiat G (2016) Ex vivo estimation of cementless acetabular cup stability using an impact hammer. Med Eng Phys 38:80–86

    Article  PubMed  Google Scholar 

  20. Michel A, Bosc R, Vayron R, Haiat G Assessing the acetabular cup implant primary stability by impact analysis: a cadaveric study. PLOS One, submitted

  21. Ong KL, Lehman J, Notz WI, Santner TJ, Bartel DL (2006) Acetabular cup geometry and bone-implant interference have more influence on initial periprosthetic joint space than joint loading and surgical cup insertion. J Biomech Eng 128:169–175

    PubMed  Google Scholar 

  22. Pastrav LC, Jaecques SV, Jonkers I, Perre GV, Mulier M (2009) In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses. J Orthop Surg Res 4:10

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pastrav LC, Jaecques SV, Mulier M, Van Der Perre G (2008) Detection of the insertion end point of cementless hip prostheses using the comparison between successive frequency response functions. J Appl Biomater Biomech 6:23–29

    CAS  PubMed  Google Scholar 

  24. Piolanti N, Andreani L, Parchi PD, Bonicoli E, Niccolai F, Lisanti M (2014) Clinical and radiological results over the medium term of isolated acetabular revision. Sci World J 2014:148592

    Article  Google Scholar 

  25. Sandborn PM, Cook SD, Spires WP, Kester MA (1988) Tissue response to porous-coated implants lacking initial bone apposition. J Arthroplasty 3:337–346

    Article  CAS  PubMed  Google Scholar 

  26. Shah RP, Scolaro JA, Componovo R, Garino JP, Lee GC (2014) Ceramic-on-ceramic total hip arthroplasty in patients younger than 55 years. J Orthop Surg 22(3):338–341

    Article  Google Scholar 

  27. Spears IR, Morlock MM, Pfleiderer M, Schneider E, Hille E (1999) The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation. J Biomech 32(11):1183–1189

    Article  CAS  PubMed  Google Scholar 

  28. Squire M, Griffin WL, Mason JB, Peindl RD, Odum S (2006) Acetabular component deformation with press-fit fixation. J Arthroplasty 21:72–77

    Article  PubMed  Google Scholar 

  29. Sun H, Inaoka H, Fukuoka Y, Masuda T, Ishida A, Morita S (2007) Range of motion measurement of an artificial hip joint using CT images. Med Biol Eng Comput 45:1229–1235

    Article  PubMed  Google Scholar 

  30. Udofia I, Liu F, ** Z, Roberts P, Grigoris P (2007) The initial stability and contact mechanics of a press-fit resurfacing arthroplasty of the hip. J Bone Jt Surg Br 89:549–556

    Article  CAS  Google Scholar 

  31. Varini E, Bialoblocka-Juszczyk E, Lannocca M, Cappello A, Cristofolini L (2010) Assessment of implant stability of cementless hip prostheses through the frequency response function of the stem-bone system. Sens Actuators a-Phys 163:526–532

    Article  CAS  Google Scholar 

  32. Varini E, Vandi M, Cristofolini L, Cappello A, Toni A (2006) Intra-operative tests on cementless hip stem mechanical stability. J Mech Med Biol 6:25–34

    Article  Google Scholar 

  33. Wu JS, Hsu SL, Chen JH (2010) Evaluating the accuracy of wear formulae for acetabular cup liners. Med Biol Eng Comput 48:157–165

    Article  PubMed  Google Scholar 

  34. Yew A, ** ZM, Donn A, Morlock MM, Isaac G (2006) Deformation of press-fitted metallic resurfacing cups. Part 2: finite element simulation. Proc Inst Mech Eng H 220:311–319

    Article  CAS  PubMed  Google Scholar 

  35. Zietz C, Fritsche A, Kluess D, Mittelmeier W, Bader R (2009) Influence of acetabular cup design on the primary implant stability: an experimental and numerical analysis. Orthopade 38(11):1097–1105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by French National Research Agency (ANR) through the PRTS program (Project OsseoWave ANR-13-PRTS-0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Haiat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michel, A., Nguyen, VH., Bosc, R. et al. Finite element model of the impaction of a press-fitted acetabular cup. Med Biol Eng Comput 55, 781–791 (2017). https://doi.org/10.1007/s11517-016-1545-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1545-2

Keywords

Navigation