Log in

Dirac cohomology for graded affine Hecke algebras

  • Published:
Acta Mathematica

Abstract

We define an analogue of the Casimir element for a graded affine Hecke algebra \( \mathbb{H} \), and then introduce an approximate square-root called the Dirac element. Using it, we define the Dirac cohomology H D (X) of an \( \mathbb{H} \)-module X, and show that H D (X) carries a representation of a canonical double cover of the Weyl group \( \widetilde{W} \). Our main result shows that the \( \widetilde{W} \)-structure on the Dirac cohomology of an irreducible \( \mathbb{H} \)-module X determines the central character of X in a precise way. This can be interpreted as p-adic analogue of a conjecture of Vogan for Harish-Chandra modules. We also apply our results to the study of unitary representations of \( \mathbb{H} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arthur, J., On elliptic tempered characters. Acta Math., 171 (1993), 73–138.

    Article  MathSciNet  MATH  Google Scholar 

  2. Atiyah, M. & Schmid, W., A geometric construction of the discrete series for semisimple Lie groups. Invent. Math., 42 (1977), 1–62.

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbasch, D. & Moy, A., A unitarity criterion for p-adic groups. Invent. Math., 98 (1989), 19–37.

    Article  MathSciNet  Google Scholar 

  4. — Reduction to real infinitesimal character in affine Hecke algebras. J. Amer. Math. Soc., 6 (1993), 611–635.

  5. Casselman, W., A new nonunitarity argument for p-adic representations. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28 (1981), 907–928.

    MathSciNet  MATH  Google Scholar 

  6. Ciubotaru, D., Spin representations of Weyl groups and the Springer correspondence. To appear in J. Reine Angew. Math.

  7. Ciubotaru, D. & Trapa, P. E., Functors for unitary representations of classical real groups and affine Hecke algebras. Adv. Math., 227 (2011), 1585–1611.

    Article  MathSciNet  MATH  Google Scholar 

  8. Etingof, P., Freund, R. & Ma, X., A Lie-theoretic construction of some representations of the degenerate affine and double affine Hecke algebras of type BC n . Represent. Theory, 13 (2009), 33–49.

    Article  MathSciNet  MATH  Google Scholar 

  9. Howe, R. E. & Moore, C. C., Asymptotic properties of unitary representations. J. Funct. Anal., 32 (1979), 72–96.

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, J. S. & Pandžić, P., Dirac cohomology, unitary representations and a proof of a conjecture of Vogan. J. Amer. Math. Soc., 15 (2002), 185–202.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kazhdan, D. & Lusztig, G., Proof of the Deligne–Langlands conjecture for Hecke algebras. Invent. Math., 87 (1987), 153–215.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kostant, B., Dirac cohomology for the cubic Dirac operator, in Studies in Memory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math., 210, pp. 69–93. Birkhäuser, Boston, MA, 2003.

  13. Lusztig, G., Cuspidal local systems and graded Hecke algebras. I. Inst. Hautes Études Sci. Publ. Math., 67 (1988), 145–202.

    Article  MathSciNet  MATH  Google Scholar 

  14. — Affine Hecke algebras and their graded version. J. Amer. Math. Soc., 2 (1989), 599–635.

  15. — Cuspidal local systems and graded Hecke algebras. III. Represent. Theory, 6 (2002), 202–242.

  16. Morris, A. O., Projective representations of reflection groups. II. Proc. London Math. Soc., 40 (1980), 553–576.

    Article  MathSciNet  MATH  Google Scholar 

  17. Opdam, E. & Solleveld, M., Homological algebra for affine Hecke algebras. Adv. Math., 220 (2009), 1549–1601.

    Article  MathSciNet  MATH  Google Scholar 

  18. Parthasarathy, R., Dirac operator and the discrete series. Ann. of Math., 96 (1972), 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  19. Salamanca-Riba, S. A. & Vogan, D. A., Jr., On the classification of unitary representations of reductive Lie groups. Ann. of Math., 148 (1998), 1067–1133.

    Article  MathSciNet  MATH  Google Scholar 

  20. Springer, T. A., Reductive groups, in Automorphic Forms, Representations and L-functions (Corvallis, OR, 1977), Part 1, Proc. Sympos. Pure Math., 33, pp. 3–27. Amer. Math. Soc., Providence, RI, 1979.

  21. Vogan, D. A., Jr., Dirac operators and unitary representations I–III. Lectures at Massachusetts Institute of Technology, 1997.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Trapa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbasch, D., Ciubotaru, D. & Trapa, P.E. Dirac cohomology for graded affine Hecke algebras. Acta Math 209, 197–227 (2012). https://doi.org/10.1007/s11511-012-0085-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-012-0085-3

Navigation