Log in

Salinity Sensor Based on 1D Photonic Crystals by Tamm Resonance with Different Geometrical Shapes

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate a novel salinity sensor based on Tamm-plasmon-polariton (TPP), comprising different shapes of Bragg reflector (ordinary, texturing, and sawtooth) and metallic layer. The finite element method is used to study the considered structure and sensing performance by using the COMSOL multiphysics simulation procedure. Here, we study the effect of surface morphology on the sensitivity; firstly, in the case of one-dimensional photonic crystal-centered defect, it harms the sensitivity; secondly, texturing and sawtooth in the case of Tamm resonance increases the sensitivity, as for texturing the surface, the sensitivity quality factor (Q) = 236 and figure of merit (FOM) = 170. For sawtooth surfaces, Q = 272.4, and FOM = 199. The consequences of structural parameters on the efficiency of sensing are studied, and new procedures are proposed to enhance TPP-based sensors. A simple and functional alternative to conventional salinity sensors may be the proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of Data and Material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

References

  1. Rahmatpour E (2019) The effect of dissipation on defect modes in a one-dimensional photonic crystal. Optik 177:46–57

    Article  CAS  Google Scholar 

  2. Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2011) Photonic crystals: molding the flow of light. Princeton university press

  3. Joannopoulos JD, Villeneuve PR, Fan S (1997) Photonic crystals: putting a new twist on light. Nature 386:143

    Article  CAS  Google Scholar 

  4. Qiu M, Jaskorzynska B (2003) Design of a channel drop filter in a two-dimensional triangular photonic crystal. Appl Phys Lett 83:1074–1076

    Article  CAS  Google Scholar 

  5. Zhang Y-N, Zhao Y, Wang Q (2015) Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity. Sens Actuators B Chem 209:431–437

    Article  CAS  Google Scholar 

  6. Zheng SJ, Zhu YN, Krishnaswamy S (2012) Nanofilm-coated photonic crystal fiber long-period gratings with modal transition for high chemical sensitivity and selectivity. Smart Sensor Phenomena, Technology, Networks, and Systems Integration 8346 2012

  7. Fenzl C, Hirsch T, Wolfbeis OS (2014) Photonic crystals for chemical sensing and biosensing. Angew Chem Int Ed 53:3318–3335

    Article  CAS  Google Scholar 

  8. Kral Z, Ferre-Borrull J, Pallares J, Trifonov T, Rodriguez A, Alcubilla R, Marsal LF (2008) Characterization of 2D macroporous silicon photonic crystals: improving the photonic band identification in angular-dependent reflection spectroscopy in the mid-IR. Mat Sci Eng B-Solid 147:179–182

    Article  CAS  Google Scholar 

  9. Yin Y, Li S, Ren J, Farrell G, Lewis E, Wang P (2018) High-sensitivity salinity sensor based on optical microfiber coil resonator. Opt Exp Vol 26 No 26 24 Dec

  10. Sensor SW, Wang J, Li G, Tong L (2012) Modeling optical microfiber loops for seawater sensing. Appl Opt 51(15):3017–3023

  11. Arafa HA, Hassan S (2018) Computer simulation and modeling of solar energy based on photonic band gap materials. Optica Applicata (OA) 4(1)

  12. Arafa HA, Hassan S (2017) Enhancement of the solar cell based on nanophotonic crystals. J Nanophotonics 11(4):046020

  13. Arafa HA, Hassan S (2018) Photonic band gap materials and monolayer solar cell. Surf Rev Lett 25(8)

  14. Gong HB, Hao XP, Wu YZ, Cao BQ, **a W, Xu XG (2011) Enhanced light extraction from GaN-based LEDs with a bottom-up assembled photonic crystal. Mater Sci Eng B-Adv 176:1028–1031

    Article  CAS  Google Scholar 

  15. Chiavazzo E, Marciano M, Viglino F, Fasano M, Asinari P (2018) Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat Sustain 764:763–772 Dec

  16. Hassan S, Thomas FK, Arafa HA (2020) Versatile photonic band gap materials for water desalination. Optik - International Journal for Light and Electron Optics 219:165160

  17. Dalmis R, Keskin OY, Azema NFA, Birlik I (2019) A new one-dimensional photonic crystal combination of TiO2/CuO for structural color applications. Ceram Int 45:21333–21340

    Article  CAS  Google Scholar 

  18. Krokhin AA, Reyes E, Gumen L (2007) Low-frequency index of refraction for a two dimensional metallic dielectric photonic crystal. Phys Rev B 75:045131

  19. Arafa HA, Zaky AZ (2019) Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor. Cryogenics 104:102991

  20. Pavlichenko I, Exner AT, Guehl M, Lugli P, Scarpa G, Lotsch BV (2012) Humidity- Enhanced thermally tunable TiO2/SiO2 Bragg stacks. J Phys Chem C 116:298–305

    Article  CAS  Google Scholar 

  21. Niu LZW, Wang Y, Zhang S (2019) Multicolored one-dimensional photonic crystal coatings with excellent mechanical robustness, strong substrate adhesion, and liquid and particle impalement resistance. Mater Chem C 3463–3470

  22. Kou DH, Zhang SF, Lutkenhaus JL, Wang L, Tang BT, Ma W (2018) Porous organic/ inorganic hybrid one-dimensional photonic crystals for rapid visual detection of organic solvents. J Mater Chem C 6:2704–2711

    Article  CAS  Google Scholar 

  23. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nature Mater 7(6):442–453

    Article  CAS  Google Scholar 

  24. Shen Y et al (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nature Commun 4:2381

    Article  Google Scholar 

  25. Li X, Yu SF (2010) Extremely high sensitive plasmonic refractive index sensors based on metallic grating. Plasmonics 5(4):389–394

    Article  Google Scholar 

  26. Zhang C, Wu K, Zhan YH, Giannini V, Li XF (2016) Planar microcavity-integrated hot-electron photodetector. Nanoscale 8:10323–10329

    Article  CAS  Google Scholar 

  27. Kavokin AV, Shelykh IA, Malpuech G (2005) Lossless interface modes at the boundary between two periodic dielectric structures. Phys Rev B Condens Matter 72(23):233102

  28. Chen Z, Han P, Leung ChW, Wang Y, Hu M, Chen Y (2012) Study of optical Tamm states based on the phase properties of one-dimensional photonic crystals. Opt Express 20(19):21618–21626

    Article  Google Scholar 

  29. Kaliteevski K et al (2007) Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys Rev B Condens Matter 76(16):165415 

  30. Zaky ZA, Aly AH (2021) Highly sensitive salinity and temperature sensor using Tamm resonance. Plasmonics. https://doi.org/10.1007/s11468-021-01487-6

    Article  Google Scholar 

  31. Zaky ZA, Sharma A, Alamri S, Aly AH (2021) Theoretical evaluation of the refractive index sensing capability using the coupling of Tamm-Fano resonance in one-dimensional photonic crystals. Appl Nanosci. https://doi.org/10.1007/s13204-021-01965-7

    Article  Google Scholar 

  32. Afinogenov BI, Bessonov VO, Nikulin AA, Fedyanin AA (2013) Observation ofhybrid state of Tamm and surface plasmon-polaritons in one-dimensionalphotonic crystals. Appl Phys Lett 103:061112

  33. Zhou H, Yang G, Wang K, Long H, Lu P (2010) Multiple optical Tamm states at ametal–dielectric mirror interface. Opt Lett 35:4112

    Article  Google Scholar 

  34. Bruckner R, Sudzius M, Hintschich SI, Frob H, Lyssenko VG, Kalitteevski MA, Iorsh I, Abram RA, Kavokin V, Leo L (2012) Parabolic polarizationsplitting of Tamm states in a metal-organic microcavity. Appl Phys Lett 100:62101

    Article  Google Scholar 

  35. Sanchez SN, Garcia ML, Murshidy MM, Abdel-Hady AG, Serry M, Adawi AM, Rarity JG, Oulton R, Barnes WL (2016) Excitonic optical Tamm states: astep toward a full molecular–dielectric photonic integration. ACS Photonics 3(5):743–748

    Article  Google Scholar 

  36. Kumar S, Maji PS, Das R (2017) Tamm-plasmon resonance based temperature sensor in a Ta2O5/SiO2based distributed Bragg reflector. Sens Actuator A 260:10–15

  37. Quan XH, Fry ES (1995) Empirical equation for the index of refraction of seawater. Appl Opt 34:3477–3480

    Article  CAS  Google Scholar 

  38. Aly AH, Sayed H, Elsayed HA (2018) Development of the monolayer silicon solar cell based on photonic crystals. Silicon 11:1377–1382

  39. Amiri IS, Bikash KP, Kawsar A, Arafa HA, Zakaria R, Yupapin P, Vigneswaran D (2019) Tri‐core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection. Microw Opt Technol Lett 61(3):847–852

  40. Hassan S, Arafa HA (2021) Salinity optical sensor by using two-dimensional photonic crystals: computational study. Mater Sci Eng B 269:115169

  41. Sameeha RQ, Arafa HAW (2021) Sabra Salinity and temperature detection for seawater based on a 1D-defective photonic crystal material. Int J Mod Phys B 35(1):2150012 (13 pages)

  42. Watt F, Bettiol AA, Van Kan JA, Teo EJ, Breese MBH (2005) Ion beam lithography and nanofabrication: a review. Int J Nanosci 4(3):269–286

  43. Tandon US (1992) An overview of ion beam lithography for nanofabrication. Vacuum 43(3):241–251

    Article  CAS  Google Scholar 

  44. Zaky AZ, Arafa HA (2021) Modeling of terahertz novel biosensor by porous silicon-based photonic crystal cavity using Tamm resonance excited by graphene. Appl Opt 60(5):1411–1419

Download references

Funding

The Deanship of Scientific Research at King Khalid University, Saudi Arabia, funded this work through the Research Group Program under grant no. R.G.P 2/127/42.

Author information

Authors and Affiliations

Authors

Contributions

(1) The authors made substantial contributions to conception and design, and/or acquisition of data, and/or analysis and interpretation of data; (2) the authors participated in drafting the article or revising it critically for important intellectual content; and (3) the authors gave final approval of the version to be submitted. All the authors contributed equally.

Corresponding author

Correspondence to Arafa H. Aly.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayed, H., Alamri, S., Matar, Z. et al. Salinity Sensor Based on 1D Photonic Crystals by Tamm Resonance with Different Geometrical Shapes. Plasmonics 17, 409–422 (2022). https://doi.org/10.1007/s11468-021-01534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01534-2

Keywords

Navigation