Log in

BaTiO3-Graphene-Affinity Layer–Based Surface Plasmon Resonance (SPR) Biosensor for Pseudomonas Bacterial Detection

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In the present work, a highly sensitive SPR biosensor based on silver (Ag), barium titanate (BaTiO3), graphene, and affinity layer is proposed for the detection of Pseudomonas bacteria. The performance of this proposed sensor has been numerically studied and analyzed for sensitivity, quality parameter, and detection accuracy. The proposed structure used attenuated total reflection (ATR) approach based on the Kretschmann configuration for the investigation of performance parameters. The inclusion of the BaTiO3 layer along with the affinity layer shows the enhancement in the performance of the proposed structure for the detection of Pseudomonas bacteria. A comparison of the proposed structure is drawn with contemporary surface plasmon resonance (SPR) biosensors for the detection of Pseudomonas bacteria, and better performance was shown. This work reports that the maximum sensitivity, quality parameter, and detection accuracy for the proposed sensor are 220 degree/RIU, 101.38 RIU−1, and 7.09 respectively. Therefore, the proposed design finds its application in Pseudomonas bacterial detection as well as opens a new window in the biosensing area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Riveros-Rosas H, Julian-Sanchez A, Moreno-Hagelsieb G, Munoz-Clares RA (2019) Aldehyde dehydrogenase diversity in bacteria of the Pseudomonas genus. Chem Biol Interact 304:83–87. https://doi.org/10.1016/j.cbi.2019.03.006

    Article  CAS  Google Scholar 

  2. Hossain Z (2014) Bacteria: Pseudomonas. Encycl Food Saf 1:490–500. https://doi.org/10.1016/B978-0-12-378612-8.00109-8

    Article  Google Scholar 

  3. Liu T, Hou J, Peng Y (2017) Effect of a newly isolated native bacteria, Pseudomonas sp. NP22 on desulfurization of the low-rank lignite. Int J Miner Process 162:6–11. https://doi.org/10.1016/j.minpro.2017.02.014

    Article  CAS  Google Scholar 

  4. Kushwaha AS, Kumar A, Kumar R, Srivastava M, Srivastava SK (2018) Zinc oxide, gold and graphene-based surface plasmon resonance (SPR) biosensor for detection of pseudomonas like bacteria: a comparative study. Optik 172:697–707. https://doi.org/10.1016/j.ijleo.2018.07.066

    Article  CAS  Google Scholar 

  5. Verma A, Prakash A, Tripathi R (2016) Sensitivity improvement of graphene based surface plasmon resonance biosensors with chaclogenide prism. Optik 127:1787–1791. https://doi.org/10.1016/j.ijleo.2015.11.083

    Article  CAS  Google Scholar 

  6. Verma A, Prakash A, Tripathi R (2015) Performance analysis of graphene based surface plasmon resonance biosensors for detection of Pseudomonas-like bacteria. Opt Quant Electron 47:1197–1205. https://doi.org/10.1007/s11082-014-9976-1

    Article  CAS  Google Scholar 

  7. Mishra SK, Gupta BD (2012) Surface plasmon resonance-based fiber-optic hydrogen gas sensor utilizing indium–tin oxide (ITO) thin films. Plasmonics 7:627–632. https://doi.org/10.1007/s11468-012-9351-7

    Article  CAS  Google Scholar 

  8. Shushama KN, Rana MM, Inum R, Hossain MB (2017) Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: simulation analysis. Opt Commun 383:186–190. https://doi.org/10.1016/j.optcom.2016.09.015

    Article  CAS  Google Scholar 

  9. Kabiraz DC, Morita K, Sakamoto K, Takahashi M, Kawaguchi T (2018) Highly sensitive detection of clenbuterol in urine sample by using surface plasmon resonance immunosensor. Talanta 186:521–526. https://doi.org/10.1016/j.talanta.2018.04.011

    Article  CAS  Google Scholar 

  10. Zhou J, Qi Q, Wang C, Qian Y, Liu G, Wang Y, Fu L (2019) Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens Bioelectron 142:111449. https://doi.org/10.1016/j.bios.2019.111449

    Article  CAS  Google Scholar 

  11. Rahman MS, Hasan MR, Rikta KA, Anower MS (2018) A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization. Opt Mater 75:567–573. https://doi.org/10.1016/j.optmat.2017.11.013

    Article  CAS  Google Scholar 

  12. Sharma AK, Pandey AK (2018) Blue phosphorene/MoS2 heterostructure based SPR sensor with enhanced sensitivity. IEEE Photon Technol Lett 30(7):595–598. https://doi.org/10.1109/LPT.2018.2803747

    Article  CAS  Google Scholar 

  13. Bijalwan A, Singh BK, Rastogi V (2020) Surface plasmon resonance-based sensors using nano-ribbons of Graphene and WSe2. Plasmonics:1–9. https://doi.org/10.1007/s11468-020-01122-w

  14. Fletchert M, Loeb GI (1979) Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl Environ Microbiol 37(1):67–72

    Article  Google Scholar 

  15. Choi SH, Kim YL, Byun KM (2011) Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt Express 19(12):458–466. https://doi.org/10.1364/OE.19.000458

    Article  CAS  Google Scholar 

  16. Roy K, Padmanabhan M, Goswami S, Sai TP, Ramalingam G, Raghavan S, Ghosh A (2013) Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat Nanotechnol 8(11):826–830. https://doi.org/10.1038/nnano.2013.206

    Article  CAS  Google Scholar 

  17. Fu H, Zhang S, Chen H, Weng J (2015) Graphene enhances the sensitivity of fiber optic surface plasmon resonance biosensor. IEEE Sensors J 15(10):5478–5482. https://doi.org/10.1109/JSEN.2015.2442276

    Article  CAS  Google Scholar 

  18. Kumar R, Kushwaha AS, Srivastava M, Mishra H, Srivastava SK (2018) Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor. Appl Phys A Mater Sci Process 124:235–210. https://doi.org/10.1007/s00339-018-1606-5

    Article  CAS  Google Scholar 

  19. Bao M, Li G, Jiang D, Cheng W, Ma X (2012) Surface plasmon optical sensor with enhanced sensitivity using top ZnO thin film. Appl Phys A Mater Sci Process 107:279–283. https://doi.org/10.1007/s00339-012-6858-x

    Article  CAS  Google Scholar 

  20. Fouad S, Sabri N, Jamal ZAZ, Poopalan P (2017) Surface plasmon resonance sensor sensitivity enhancement using gold-dielectric material. Int J Nanoelectron Mater 10:149–158

    Google Scholar 

  21. Liu L, Wang M, Jiao L, Wu T, **a F, Liu M, Kong W, Dong L, Yun M (2019) Sensitivity enhancement of a graphene– barium titanate-based surface plasmon resonance biosensor with an Ag– au bimetallic structure in the visible region. J Opt Soc Am B 36(4):1108–1116. https://doi.org/10.1364/JOSAB.36.001108

    Article  CAS  Google Scholar 

  22. Sun P, Wang M, Liu L, Jiao L, Du W, **a F, Liu M, Kong W, Dong L, Yun M (2019) Sensitivity enhancement of surface plasmon resonance biosensor based on graphene and barium titanate layers. Appl Surf Sci 475:342–347. https://doi.org/10.1016/j.apsusc.2018.12.283

    Article  CAS  Google Scholar 

  23. Gan S, Zhao Y, Dai X, **ang Y (2019) Sensitivity enhancement of surface plasmon resonance sensors with 2D franckeite nanosheets. Results Phys 13:102320. https://doi.org/10.1016/j.rinp.2019.102320

    Article  Google Scholar 

  24. Chen S, Lin C (2016) High-performance bimetallic film surface plasmon resonance sensor based on film thickness optimization. Optik 127(19):7514–7519. https://doi.org/10.1016/j.ijleo.2016.05.085

    Article  CAS  Google Scholar 

  25. Lin Z, Jiang L, Wu L, Guo J, Dai X, **ang Y, Fan D (2016) Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS2-Au films. IEEE Photon J 8(6):1–8. https://doi.org/10.1109/JPHOT.2016.2631407

    Article  Google Scholar 

  26. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379. https://doi.org/10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  27. Wemple SH, Didomenico JM, Camlibel I (1968) Dielectric and optical properties of melt-grown BaTiO3. J Phys Chem Solids 29:1797–1803. https://doi.org/10.1016/0022-3697(68)90164-9

    Article  Google Scholar 

  28. Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94(3):031901. https://doi.org/10.1063/1.3073717

    Article  CAS  Google Scholar 

  29. Yamamoto M (2002) Surface plasmon resonance (SPR) theory. Tutor Rev Polarogr 48:209. https://doi.org/10.5189/revpolarography.48.209

    Article  Google Scholar 

  30. Maharana PK, Jha R (2012) Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance. Sens Actuators B Chem 169:161–166. https://doi.org/10.1016/j.snb.2012.04.051

    Article  CAS  Google Scholar 

  31. Zafar R, Nawaz S, Singh G, d’Alessandro A, Salim M (2018) Plasmonics- based refractive index sensor for detection of hemoglobin concentration. IEEE Sensors J 18(11):4372–4377. https://doi.org/10.1109/JSEN.2018.2826040

    Article  CAS  Google Scholar 

  32. Sahu S, Yupapin PP, Ali J, Singh G (2018) Porous silicon based Bragg-grating resonator for refractive index biosensing. Photonic Sensors 8(3):248–254. https://doi.org/10.1007/s13320-018-0459-z

    Article  CAS  Google Scholar 

  33. Maurya JB, Prajapati YK, Singh V, Saini JP (2015) Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer. Appl Phys A Mater Sci Process 121(2):525–533. https://doi.org/10.1007/s00339-015-9442-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful for collaborative work among the members from ECE Department, MNIT Jaipur (India), the Laser Centre, IBNU SINA ISIR, Universiti Teknologi Malaysia, Johor Bahru campus (Malaysia), and the faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City (Vietnam).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mudgal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudgal, N., Yupapin, P., Ali, J. et al. BaTiO3-Graphene-Affinity Layer–Based Surface Plasmon Resonance (SPR) Biosensor for Pseudomonas Bacterial Detection. Plasmonics 15, 1221–1229 (2020). https://doi.org/10.1007/s11468-020-01146-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01146-2

Keywords

Navigation