Log in

High-Performance Enhancement of a GaAs Photodetector Using a Plasmonic Grating

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, we present and establish a gold surface plasmon polariton (SPP) GaAs photodetector that achieves high internal quantum efficiency (IQE). At a wavelength of 600 nm, the IQE with the SPP was 85%, while the IQE without the SPP was 42%, an enhancement of 43%. Also, at a wavelength of 675 nm, the IQE with SPP was 82%, whereas the IQE without SPP was 45%, which constitutes an increase of 37%. Such excellent performance is ascribed to the subwavelength scope of the optical power in the photoconductive-based gold SPP GaAs that provides high IQE. Moreover, the recombination of the SPP in the photodetector provides greater photocurrent and responsivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AA G, Atwater HA (2001) Plasmonics - a route to nanoscale optical devices. Adv Mater Wiley Online Library, Article 13(19):1501–1505

  2. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213

    Article  CAS  Google Scholar 

  3. Schuller JA, Barnard ES, Cai WS, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9(3):193–204

    Article  CAS  Google Scholar 

  4. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91

    Article  CAS  Google Scholar 

  5. Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6(11):737–748

    Article  CAS  Google Scholar 

  6. Leuthold J et al (2013) Plasmonic Communications: Light on a Wire. 24(5):28–35

  7. Haffner C et al (2015) All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photonics 9(8):525–528

    Article  CAS  Google Scholar 

  8. Brongersma ML (2016) Plasmonic Photodetectors, Photovoltaics, and hot-Electron devices. Proc IEEE 104(12):2349–2361

    Article  CAS  Google Scholar 

  9. Hoessbacher C et al (2017) Optical interconnect solution with Plasmonic modulator and Ge Photodetector Array. IEEE Photonics Technol Lett 29(21):1760–1763

    Article  CAS  Google Scholar 

  10. Brongersma ML, Halas NJ, Nordlander P (2015) Plasmon induced hot carrier science and technology. Nat Nanotechnol 10(1):25–34

    Article  CAS  Google Scholar 

  11. Heni W et al (2016) 108 Gbit/s Plasmonic Mach-Zehnder modulator with > 70-GHz electrical bandwidth. J Lightwave Technol Proc Paper 34(2):393–400

    Article  Google Scholar 

  12. Hoessbacher C et al (2017) Plasmonic modulator with > 170 GHz bandwidth demonstrated at 100 GBd NRZ. Opt Express 25(3):1762–1768

    Article  CAS  Google Scholar 

  13. Mikami H, Gao L, Goda K (2016) Ultrafast optical imaging technology: principles and applications of emerging methods. Nano Photonics 5(4):497–509

    Google Scholar 

  14. Wang JQ et al (2016) High-responsivity graphene-on-silicon slot waveguide photodetectors. Nanoscale 8(27):13206–13211

    Article  CAS  Google Scholar 

  15. Maier SA (2007) Plasmonics: fundamentals and applications. New York: Springer,Book,Chapter 2

  16. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  17. Pendry JB, Martín-Moreno L, Garcia-Vidal FJ (2004) Mimicking surface plasmons with structured surfaces. Science 305(5685):847–848

    Article  CAS  Google Scholar 

  18. Maier SA, Andrews SR, Martín-Moreno L, Garcia-Vidal FJ (2006) Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys Rev Lett 97(17):176805

    Article  Google Scholar 

  19. Gan Q, Fu Z, Ding YJ, Bartoli FJ (2008) Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys Rev Lett 100(25):256803

    Article  Google Scholar 

  20. Li D, He J, Ding G, Tang Q, Ying Y, He (2018) Borophene: Stretch-Driven Increase in Ultrahigh Thermal Conductance of Hydrogenated Borophene and Dimensionality Crossover in Phonon Transmission. Adv Funct Mater 28(31):1–7

    CAS  Google Scholar 

  21. Tang W, Lin W, Chen X, Liu C, Yu A, Lu W (2016) Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications. R Soc Chem Na-oscale 8:15196–15204

    CAS  Google Scholar 

  22. Lockyear MJ, Hibbins AP, Sambles JR (2009) Microwave surface-plasmon-like modes on thin metamaterials. Phys Rev Lett 102(7):073901

    Article  Google Scholar 

  23. Okamoto T (2001) Near-field optics and surface plasmon polaritons. Springer, Topics in Applied Physics, vol 81, pp 97–122

  24. Zeng, Shuwen, Yu, **a, Law, Wing-Cheung, Zhang, Yating, Hu, Rui, Dinh, Xuan-Quyen, Ho, Ho-Pui, Yong, Ken-Tye (2013) Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sensors Actuators B: Chem 176: 1128–1133

  25. Raether, Heinz (1988) Surface Plasmons on smooth and rough surfaces and on gratings. Springer tracts in modern physics 111. New York: Springer-Verlag. ISBN 978-3540173632

  26. Cottam MG (1989) Introduction to surface and Superlattice excitations. New York: Cambridge University Press. ISBN 978-0750305884

  27. Kittel C (1996) Introduction to solid state physics (8th). Hoboken: Wiley. ISBN 978-0-471-41526-8

  28. Dostalek J, Ctyroky J, Homola J, Brynda E, Skalsky M, Nekvindova P, Spirkova J, Skvor J, Schrofel J (2001) Surface plasmon resonance biosensor based on integrated optical waveguide. Sensors Actuators B Chem 76:8–12

    Article  CAS  Google Scholar 

  29. Homola J (2006) Surface Plasmon resonance based sensors. Springer series on chemical sensors and biosensors, 4. Berlin: Springer-Verlag. ISBN 978-3-540-33918-2

  30. Salamin Y, Ma P, Baeuerle B, Emboras A (2018) Yuriy Myronovych Fedoryshyn, Wolfgang Heni, Bojun Cheng, Arne Josten, and Juerg Leuthold “100 GHz Plasmonic Photodetector”. ACS Photonics 5(8):3291–3297

    Article  CAS  Google Scholar 

  31. Xuewei Zhao, Moeen M, Toprak MS, Guilei Wang, Jun Luo, **ngxing Ke, Zhihua Li, Daoqun Liu, Wenwu Wang, Chao Zhao, Radamson H (2019) Design impact on the performance of Ge PIN photodetectors. J Mater Sci: Mater Electron 1–8

  32. Yaakov Mandelbaum, Avraham Chelly, Avi Karsenty (2018) Laser beam scanning using near-field scanning optical microscopy nanoscale silicon-based photodetector. J Nanophotonics 12(3):(036002(1–14))

  33. Gay G, Alloschery O, Lesegno BVd, Weiner J, Lezec HJ (2006) Phys Rev Lett 96:213901

  34. Dionne JA, Lezec HJ, Atwater HA (2006) Nano Lett 6:1928

    Article  CAS  Google Scholar 

  35. Collin S, Fabrice P, Teissier R, Pelouard J-L (2004) Appl Phys Lett 85:194

    Article  CAS  Google Scholar 

  36. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. NanoLetters 10(7)2342–2348

  37. Abdelsalam ME, Bartlett PN, Baumberg JJ, Coyle S (2004) Preparation of arrays of isolated spherical cavities by self-assembly of polystyrene spheres on self-assembled prepatterned macroporous films. Adv Mater 16(1)90–93

  38. Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ (2008) A metamaterial absorber for the tera hertz regime: design, fabrication and characterization. Optics Express 16(10)7181–7188

  39. Ye YQ, ** Y, He S (2010) Omnidirectional, polarization insensitive and broadband thin absorber in the terahertz regime. J Opt Soc Am B: Opt Phys 27(3):498–504

    Article  CAS  Google Scholar 

  40. Park H, Kim, Ho J, Beresford R, Xu J (2011) Effects of electrical contacts on the photoconductive gain of nanowire photodetectors. Appl Phys Lett 99(14):143110

  41. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193

    Article  CAS  Google Scholar 

  42. Das N, Karar A, Vasiliev M, Tan CL, Alameh K, Lee YT (2011) Analysis of Nano-grating-assisted light absorption enhancement in metal-semiconductor-metal photodetectors patterned using focused ion-beam lithography. Opt Commun 284(6):1694–1700

  43. Gordon R, Sinton D, Kavanagh KL, Brolo AG (2008) A new generation of sensors based on extra ordinary optical transmission. Acc Chem Res 41(8):1049–1057

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hagar Marouf.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousif, B., Abo-Elsoud, M.E.A. & Marouf, H. High-Performance Enhancement of a GaAs Photodetector Using a Plasmonic Grating. Plasmonics 15, 1377–1387 (2020). https://doi.org/10.1007/s11468-020-01142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01142-6

Keywords

Navigation