Log in

Machine learning transforms the inference of the nuclear equation of state

  • View & Perspective
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Our knowledge of the properties of dense nuclear matter is usually obtained indirectly via nuclear experiments, astrophysical observations, and nuclear theory calculations. Advancing our understanding of the nuclear equation of state (EOS, which is one of the most important properties and of central interest in nuclear physics) has relied on various data produced from experiments and calculations. We review how machine learning is revolutionizing the way we extract EOS from these data, and summarize the challenges and opportunities that come with the use of machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Drischler, J. Holt, and C. Wellenhofer, Chiral effective field theory and the high-density nuclear equation of state, Annu. Rev. Nucl. Part. Sci. 71(1), 403 (2021)

    Article  ADS  Google Scholar 

  2. B. A. Li, L. W. Chen, and C. M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions, Phys. Rep. 464(4–6), 113 (2008)

    Article  ADS  Google Scholar 

  3. M. Oertel, M. Hempel, T. Klähn, and S. Typel, Equations of state for supernovae and compact stars, Rev. Mod. Phys. 89(1), 015007 (2017)

    Article  ADS  Google Scholar 

  4. A. Sorensen, K. Agarwal, K. W. Brown, et al., Dense nuclear matter equation of state from heavy-ion collisions, ar**v: 2301.13253 (2023)

  5. J. Lattimer, Neutron stars and the nuclear matter equation of state, Annu. Rev. Nucl. Part. Sci. 71(1), 433 (2021)

    Article  ADS  Google Scholar 

  6. J. A. López, C. O. Dorso, and G. A. Frank, Properties of nuclear pastas, Front. Phys. (Bei**g) 16(2), 24301 (2021)

    Article  ADS  Google Scholar 

  7. M. Tsang, J. Stone, F. Camera, P. Danielewicz, S. Gandolfi, K. Hebeler, C. J. Horowitz, J. Lee, W. G. Lynch, Z. Kohley, R. Lemmon, P. Möller, T. Murakami, S. Riordan, X. Roca-Maza, F. Sammarruca, A. W. Steiner, I. Vidaña, and S. J. Yennello, Constraints on the symmetry energy and neutron skins from experiments and theory, Phys. Rev. C 86(1), 015803 (2012)

    Article  ADS  Google Scholar 

  8. H. Wolter, M. Colonna, D. Cozma, et al., Transport model comparison studies of intermediate-energy heavy-ion collisions, Prog. Part. Nucl. Phys. 125, 103962 (2022)

    Article  Google Scholar 

  9. Y. J. Wang and Q. F. Li, Application of microscopic transport model in the study of nuclear equation of state from heavy ion collisions at intermediate energies, Front. Phys. (Bei**g) 15(4), 44302 (2020)

    Article  ADS  Google Scholar 

  10. M. I. Jordan and T. M. Mitchell, Machine learning: Trends, perspectives, and prospects, Science 349(6245), 255 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and L. Zdeborová, Machine learning and the physical sciences, Rev. Mod. Phys. 91(4), 045002 (2019)

    Article  ADS  Google Scholar 

  12. A. J. Hey, S. Tansley, K. M. Tolle, et al., The Fourth Paradigm: Data-Intensive Scientific Discovery, Vol. 1, Microsoft Research Redmond, WA, 2009

    Google Scholar 

  13. S. Gazula, J. Clark, and H. Bohr, Learning and prediction of nuclear stability by neural networks, Nucl. Phys. A. 540(1–2), 1 (1992)

    Article  ADS  Google Scholar 

  14. S. Bass, A. Bischoff, C. Hartnack, J. A. Maruhn, J. Reinhardt, H. Stocker, and W. Greiner, Neural networks for impact parameter determination, J. Phys. G Nucl. Part. Phys. 20(1), L21 (1994)

    Article  ADS  Google Scholar 

  15. P. Bedaque, A. Boehnlein, M. Cromaz, M. Diefenthaler, L. Elouadrhiri, T. Horn, M. Kuchera, D. Lawrence, D. Lee, S. Lidia, R. McKeown, W. Melnitchouk, W. Nazarewicz, K. Orginos, Y. Roblin, M. Scott Smith, M. Schram, and X. N. Wang, A. I. for nuclear physics, Eur. Phys. J. A 57(3), 100 (2021)

    Article  ADS  Google Scholar 

  16. A. Boehnlein, M. Diefenthaler, N. Sato, M. Schram, V. Ziegler, C. Fanelli, M. Hjorth-Jensen, T. Horn, M. P. Kuchera, D. Lee, W. Nazarewicz, P. Ostroumov, K. Orginos, A. Poon, X. N. Wang, A. Scheinker, M. S. Smith, and L. G. Pang, Colloquium: Machine learning in nuclear physics, Rev. Mod. Phys. 94(3), 031003 (2022)

    Article  ADS  Google Scholar 

  17. W. B. He, Y. G. Ma, L. G. Pang, H. C. Song, and K. Zhou, High energy nuclear physics meets Machine Learning, ar**v: 2303.06752 (2023)

  18. W. He, Q. Li, Y. Ma, Z. M. Niu, J. C. Pei, and Y. X. Zhang, Machine learning in nuclear physics at low and intermediate energies, ar**v: 2301.06396 (2023)

  19. P. Morfouace, C. Tsang, Y. Zhang, W. G. Lynch, M. B. Tsang, D. D. S. Coupland, M. Youngs, Z. Chajecki, M. A. Famiano, T. K. Ghosh, G. Jhang, J. Lee, H. Liu, A. Sanetullaev, R. Showalter, and J. Winkelbauer, Constraining the symmetry energy with heavy-ion collisions and Bayesian analyses, Phys. Lett. B 799, 135045 (2019)

    Article  Google Scholar 

  20. M. O. Kuttan, J. Steinheimer, K. Zhou, and H. Stoecker, The QCD EoS of dense nuclear matter from Bayesian analysis of heavy ion collision data, ar**v: 2211.11670 (2022)

  21. B. A. Li and W. J. **e, Bayesian inference of in-medium baryon–baryon scattering cross sections from HADES proton flow data, ar**v: 2303.10474 (2023)

  22. S. Huth, P. T. Pang, I. Tews, T. Dietrich, A. Le Fèvre, A. Schwenk, W. Trautmann, K. Agarwal, M. Bulla, M. W. Coughlin, and C. Van Den Broeck, Constraining neutron-star matter with microscopic and macroscopic collisions, Nature 606(7913), 276 (2022)

    Article  ADS  Google Scholar 

  23. L. G. Pang, K. Zhou, N. Su, H. Petersen, H. Stöcker, and X. N. Wang, An equation-of-state-meter of quantum chromodynamics transition from deep learning, Nat. Commun. 9(1), 210 (2018)

    Article  ADS  Google Scholar 

  24. Y. Wang, Z. Gao, H. Lü, and Q. Li, Decoding the nuclear symmetry energy event-by-event in heavy-ion collisions with machine learning, Phys. Lett. B 835, 137508 (2022)

    Article  Google Scholar 

  25. K. Zhou, L. Wang, L. G. Pang, and S. Z. Shi, Exploring QCD matter in extreme conditions with Machine Learning, ar**v: 2303.15136 (2023)

  26. M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys. 378, 686 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported in part by the National Natural Science Foundation of China (Grant Nos. U2032145 and 11875125) and the National Key Research and Development Program of China (Grant No. 2020YFE0202002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Li.

Additional information

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, Q. Machine learning transforms the inference of the nuclear equation of state. Front. Phys. 18, 64402 (2023). https://doi.org/10.1007/s11467-023-1313-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1313-3

Keywords

Navigation