Log in

Entanglement concentration for a non-maximally entangled four-photon cluster state

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We present a scheme for locally concentrating a non-maximally entangled four-photon cluster state into a maximally-entangled four-photon cluster state. This scheme has a high success probability. The controlled-NOT (CNOT) gate is a crucial ingredient in this scheme, and we use a nearly deterministic CNOT gate, which is similar with that first introduced by Nemoto et al. (Phys. Rev. Lett., 2004, 93: 250502). This CNOT gate has a simple structure and does not need the strong nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Jeong and M. S. Kim, Efficient quantum computation using coherent states, Phys. Rev. A, 2002, 65(4): 042305

    Article  ADS  Google Scholar 

  2. T. C. Ralph, A. Gilchrist, G. J. Milburn, W. Munro, and S. Glancy, Quantum computation with optical coherent states, Phys. Rev. A, 2003, 68(4): 042319

    Article  ADS  Google Scholar 

  3. S. J. van Enk and O. Hirota, Entangled coherent states: Teleportation and decoherence, Phys. Rev. A, 2001, 64(2): 022313

    Article  ADS  Google Scholar 

  4. H. Jeong, M. S. Kim, and J. Lee, Quantum-information processing for a coherent superposition state via a mixedentangled coherent channel, Phys. Rev. A, 2001, 64(5): 052308

    Article  ADS  Google Scholar 

  5. D. Gottesman and J. Preskill, Secure quantum key distribution using squeezed states, Phys. Rev. A, 2001, 63(2): 022309

    Article  ADS  Google Scholar 

  6. N. J. Cerf, M. Lévy, and G. Assche, Quantum distribution of Gaussian keys using squeezed states, Phys. Rev. A, 2001, 63(5): 052311

    Article  ADS  Google Scholar 

  7. W. Dür, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A, 2000, 62(6): 062314

    Article  MathSciNet  ADS  Google Scholar 

  8. C. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. Smolin, and W. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett., 1996, 76(5): 722

    Article  ADS  Google Scholar 

  9. Z. Zhao, J. W. Pan, and M. S. Zhan, Practical scheme for entanglement concentration, Phys. Rev. A, 2001, 64(1): 014301

    Article  ADS  Google Scholar 

  10. L. Ye and G. C. Guo, Scheme for entanglement concentration of atomic entangled states in cavity QED, Phys. Lett. A, 2004, 327(4): 284

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. C. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. Smolin, and W. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett., 1996, 76(5): 722

    Article  ADS  Google Scholar 

  12. M. Yang and Z. L. Cao, Entanglement distillation for W class states, Physica A, 2004, 337(1–2): 141

    Article  ADS  Google Scholar 

  13. M. Yang, W. Song, and Z. L. Cao, Entanglement distillation for atomic states via cavity QED, Physica A, 2004, 341: 251

  14. J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, Entanglement purification for quantum communication, Nature, 2001, 410(6832): 1067

    Article  ADS  Google Scholar 

  15. H. F. Wang, S. Zhang, and K. H. Yeon, Linear optical scheme for entanglement concentration of two partially entangled three-photon W states, Eur. Phys. J. D, 2010, 56(2): 271

    Article  ADS  Google Scholar 

  16. L. L. Sun, H. F. Wang, S. Zhang, and K. H. Yeon, Entanglement concentration of partially entangled three-photon W states with weak cross-Kerr nonlinearity, J. Opt. Soc. Am. B, 2012, 29(4): 630

    Article  ADS  Google Scholar 

  17. Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient two-step entanglement concentration for arbitrary W states, Phys. Rev. A, 2012, 85(4): 042302

    Article  ADS  Google Scholar 

  18. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A, 1996, 53(4): 2046

    Article  ADS  Google Scholar 

  19. Z. Zhao, J. W. Pan, and M. S. Zhan, Practical scheme for entanglement concentration, Phys. Rev. A, 2001, 64(1): 014301

    Article  ADS  Google Scholar 

  20. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics, Phys. Rev. A, 2008, 77(6): 062325

    Article  ADS  Google Scholar 

  21. Z. L. Cao and M. Yang, Entanglement distillation for threeparticle W class states, J. Phys. B, 2003, 36(21): 4245

    Article  ADS  Google Scholar 

  22. L. H. Zhang, M. Yang, and Z. L. Cao, Entanglement concentration for unknown Wclass states, Physica A, 2007, 374(2): 611

    Article  ADS  Google Scholar 

  23. H. F. Wang, S. Zhang, and K. H. Yeon, Linear optical scheme for entanglement concentration of two partially entangled three-photon W states, Eur. Phys. J. D, 2010, 56(2): 271

    Article  ADS  Google Scholar 

  24. Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient two-step entanglement concentration for arbitrary W states, Phys. Rev. A, 2012, 85(4): 042302

    Article  ADS  Google Scholar 

  25. W. Dür and H. J. Briegel, Stability of macroscopic entanglement under decoherence, Phys. Rev. Lett., 2004, 92(18): 180403

    Article  Google Scholar 

  26. B. Si, S. L. Su, L. L. Sun, L. Y. Cheng, H. F. Wang, and S. Zhang, Efficient three-step entanglement concentration for an arbitrary four-photon cluster state, Chin. Phys. B, 2013, 22(3): 030305

    Article  ADS  Google Scholar 

  27. S. Y. Zhao, J. Liu, L. Zhou, and Y. B. Sheng, Two-step entanglement concentration for arbitrary electronic cluster state, Quantum Inf. Process., 2013, 12(12): 3633

    Article  MathSciNet  ADS  Google Scholar 

  28. B. S. Choudhury and A. Dhara, An entanglement concentration protocol for cluster states, Quantum Inf. Process., 2013, 12(7): 2577

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Q. Lin and J. Li, Quantum control gates with weak cross-Kerr nonlinearity, Phys. Rev. A, 2009, 79(2): 022301

    Article  ADS  Google Scholar 

  30. K. Nemoto and W. J. Munro, Nearly deterministic linear optical controlled-NOT gate, Phys. Rev. Lett., 2004, 93(25): 250502

    Article  ADS  Google Scholar 

  31. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Linear optical quantum computing with photonic qubits, Rev. Mod. Phys., 2007, 79(1): 135

    Article  ADS  Google Scholar 

  32. B. Yurke, Wideband photon counting and homodyne detection, Phys. Rev. A, 1985, 32(1): 311

    Article  ADS  Google Scholar 

  33. J. H. Shapiro, Single-photon Kerr nonlinearities do not help quantum computation, Phys. Rev. A, 2006, 73: 062305

  34. J. H. Shapiro and M. Razavi, Continuous-time cross-phase modulation and quantum computation, New. J. Phys., 2007, 9: 16

  35. W. J. Munro, Kae Nemoto, T. P. Spiller, S. D. Barrett, Pieter Kok, and R. G. Beausoleil, Efficient optical quantum information processing, J. Opt. B, 2005, 7(7): S135

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Ming Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Yu, YF. & Zhang, ZM. Entanglement concentration for a non-maximally entangled four-photon cluster state. Front. Phys. 9, 640–645 (2014). https://doi.org/10.1007/s11467-014-0435-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-014-0435-z

Keywords

Navigation