Log in

Multi-element analysis by ArF laser excited atomic fluorescence of laser ablated plumes: Mechanism and applications

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

A new multi-element analysis technique based on laser-excited atomic fluorescence was reviewed. However, the one-wavelength-one-transition constraint was overcome. Numerous elements were induced to fluoresce at a single excitation wavelength of 193 nm. This was possible provided that the analytes were imbedded in dense plumes, such as those produced by pulsed laser ablation. The underlying mechanism of the technique was explained and corroborated. Analytical applications to metals, plastics, ceramics and their composites were discribed. Detection limits in the ng/g range and mass limits of atto moles were demonstrated. Several real-world problems, including the analysis of paint coating for trace lead, the non-destructive analysis of potteries and ink, the chemical profiling of electrode-plastic interfaces, and the analysis of ingestible lead colloids were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. R. Noll, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications, Berlin Heidelberg: Springer, 2012

    Book  Google Scholar 

  2. N. H. Cheung, Resonance-Enhanced LIBS, in: Laser Induced Breakdown Spectroscopy: Fundamentals and Applications, edited by A. Miziolek, V. Palleschi, and I. Schechter, London: Cambridge University Press, 2006

    Google Scholar 

  3. D. J. Butcher, Appl. Spectrosc. Rev., 2005, 40(2): 147

    Article  ADS  Google Scholar 

  4. S. K. Ho and N. H. Cheung, Anal. Chem., 2005, 77(1): 193

    Article  Google Scholar 

  5. S. K. Ho and N. H. Cheung, Appl. Phys. Lett., 2005, 87(26): 264104

    Article  ADS  Google Scholar 

  6. S. K. Ho and N. H. Cheung, J. Anal. At. Spectrom., 2007, 22(3): 292

    Article  Google Scholar 

  7. S. K. Lau and N. H. Cheung, Appl. Spectrosc., 2009, 63(7): 835

    Article  ADS  Google Scholar 

  8. P. C. Chu, W. L. Yip, Y. Cai, and N. H. Cheung, J. Anal. At. Spectrom., 2011, 26(6): 1210

    Article  Google Scholar 

  9. N. H. Cheung, Appl. Spectrosc. Rev., 2007, 42(3): 235

    Article  ADS  Google Scholar 

  10. Y. Cai and N. H. Cheung, Microchem. J., 2011, 97(2): 109

    Article  Google Scholar 

  11. S. K. Ho, Highly Sensitive Elemental Analysis of ArF Laser Excited Atomic Fluorescence of Laser Plumes, Thesis for the Degree of Doctor of Philosophy, Hong Kong Baptist University, 2007

  12. A. Beiser, Concepts of Modern Physics, 6th Ed., New York: McGraw Hill, 2003

    Google Scholar 

  13. H. Bach and D. Krause (Eds.), Analysis of the Composition and Structure of Glass and Glass Ceramics, Berlin: Springer, 1999

    Google Scholar 

  14. C. Pan, Yixing Pottery: The World of Chinese Tea Culture, especially Ch. 9, San Francisco: Long River Press, 2004

    Google Scholar 

  15. J. C. J. Bart, Plastics Additives: Advanced Industrial Analysis, especially Ch. 3, Amsterdam: IOS Press, 2006

    Google Scholar 

  16. Consumer Product Safety Improvement Act 2008, US Product Safety Commission, test method CPSC-CH-E1003-09

  17. M. N. Gernandt and J. J. Urlaub, J. Forensic Sci., 1996, 41: 530

    Google Scholar 

  18. F. C. Kreb and K. Norrman, Prog. Photovoltaics: Res. Appl., 2007, 15: 697

    Article  Google Scholar 

  19. S. T. Lee, Z. Q. Cao, and L. S. Hung, Appl. Phys. Lett., 1999, 75(10): 1404

    Article  ADS  Google Scholar 

  20. S. J. Jo, C. S. Kim, J. B. Kim, S. Y. Ryu, J. H. Noh, H. K. Baik, Y. S. Kim, and S. J. Lee, J. Appl. Phys., 2008, 103(11): 114502

    Article  ADS  Google Scholar 

  21. L. Kirste, K. Kohler, M. Maier, M. Kinzer, M. Maier, and J. Wagner, J. Mater. Sci.: Mater. Electron., 2008, 19(S1): S176

    Article  Google Scholar 

  22. N. Bityurin and A. Malyshev, J. Appl. Phys., 2002, 92(1): 605

    Article  ADS  Google Scholar 

  23. For a comparison of the analytical performance of PLEAF against ICP-MS, see: S. K. Lau, Minimally Destructive and Multi-element Analysis of Stainless Steel by ArF Laser-Induced Plume Emissions, Thesis for the Degree of Master of Philosophy, Section 2.4, Hong Kong Baptist University, 2012

  24. J. Pisonero, J. Koch, M. Wälle, W. Hartung, N. D. Spencer, and D. Günther, Anal. Chem., 2007, 79(6): 2325

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nai-Ho Cheung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Y., Chu, PC., Ho, S.K. et al. Multi-element analysis by ArF laser excited atomic fluorescence of laser ablated plumes: Mechanism and applications. Front. Phys. 7, 670–678 (2012). https://doi.org/10.1007/s11467-012-0264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-012-0264-x

Keywords

Navigation