Log in

Constitutive modeling of principal stress rotation by considering inherent and induced anisotropy of soils

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

In order to simulate the soil response during principal stress rotation, anisotropic unified hardening (UH) model is developed within the framework of elastoplastic theory. Without introducing any additional mechanism to display the role of stress rotation specifically, this model achieves the simulation by considering the material anisotropy. The effect of inherent anisotropy is reflected using the anisotropic transformed stress method, but a new formula for the stress map** is adopted to keep the mean stress unchanged. Analysis indicates that from the view of the transformed stress tensor, the anisotropic soil is subjected to loading during pure rotation of principal stress axes, so that plastic strains can be calculated. To represent the induced anisotropy, a fabric evolution law is proposed based on laboratory and numerical test results. At the critical state, the fabric tensor reaches a stable value determined by the stress state, while the critical state line is unique in the plane of void ratio versus mean stress. The anisotropic UH model has concise formulation and explicit elastoplastic flexibility matrix and can provide reasonable predictions for the deformation of anisotropic soils when principal stresses rotate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Been K, Jefferies MG, Hachey J (1991) Critical state of sands. Géotechnique 41:365–381

    Article  Google Scholar 

  2. Cai Y, Yu HS, Wanatowski D et al (2012) Noncoaxial behavior of sand under various stress paths. J Geotech Geoenviron Eng 139:1381–1395

    Article  Google Scholar 

  3. Chang CS, Yin ZY (2010) Micromechanical modeling for inherent anisotropy in granular materials. J Eng Mech 136:830–839

    Article  Google Scholar 

  4. Dafalias YF (2016) Must critical state theory be revisited to include fabric effects? Acta Geotech 11:479–491

    Article  Google Scholar 

  5. Gao ZW, Zhao JD (2017) A non-coaxial critical-state model for sand accounting for fabric anisotropy and fabric evolution. Int J Solids Struct 106–107:200–212

    Article  Google Scholar 

  6. Gao ZW, Zhao JD, Li XS et al (2014) A critical state sand plasticity model accounting for fabric evolution. Int J Numer Anal Methods Geomech 38:370–390

    Article  Google Scholar 

  7. Guo N, Zhao JD (2013) The signature of shear-induced anisotropy in granular media. Comput Geotech 47:1–15

    Article  MathSciNet  Google Scholar 

  8. Gutierrez M, Ishihara K, Towhata I (1993) Model for the deformation of sand during rotation of principal stress directions. Soils Found 33:105–117

    Article  Google Scholar 

  9. Gutierrez M, Wang J, Yoshimine M (2009) Modeling of the simple shear deformation of sand: effects of principal stress rotation. Acta Geotech 4:193–201

    Article  Google Scholar 

  10. Ishihara K (1993) Liquefaction and flow failure during earthquakes. Géotechnique 43:351–415

    Article  Google Scholar 

  11. Ishihara K, Towhata I (1983) Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils Found 23:11–26

    Article  Google Scholar 

  12. Jia GW, Zhan TL, Chen YM et al (2009) Performance of a large-scale slope model subjected to rising and lowering water levels. Eng Geol 106:92–103

    Article  Google Scholar 

  13. Kuhn MR, Sun WC, Wang Q (2015) Stress-induced anisotropy in granular materials: fabric, stiffness, and permeability. Acta Geotech 10:399–419

    Article  Google Scholar 

  14. Lashkari A, Latifi M (2008) A non-coaxial constitutive model for sand deformation under rotation of principal stress axes. Int J Numer Anal Methods Geomech 32:1051–1086

    Article  Google Scholar 

  15. Li XS, Dafalias YF (2004) A constitutive framework for anisotropic sand including non-proportional loading. Géotechnique 54:41–55

    Article  Google Scholar 

  16. Li XS, Dafalias YF (2012) Anisotropic critical state theory: role of fabric. J Eng Mech 138:263–275

    Article  Google Scholar 

  17. Li X, Li XS (2009) Micro-macro quantification of the internal structure of granular materials. J Eng Mech 135:641–656

    Article  Google Scholar 

  18. Li X, Yu HS (2010) Numerical investigation of granular material behaviour under rotational shear. Géotechnique 60:381–394

    Article  Google Scholar 

  19. Matsuoka H, Sakakibara K (1987) A constitutive model for sands and clays evaluating principal stress rotation. Soils Found 27:73–88

    Article  Google Scholar 

  20. Miura K, Miura S, Toki S (1986) Deformation behavior of anisotropic dense sand under principal stress axes rotation. Soils Found 26:36–52

    Article  Google Scholar 

  21. Nakata Y, Hyodo M, Murata H et al (1998) Flow deformation of sands subjected to principal stress rotation. Soils Found 38:115–128

    Article  Google Scholar 

  22. Oda M (1993) Inherent and induced anisotropy in plasticity theory of granular soils. Mech Mater 16:35–45

    Article  Google Scholar 

  23. Oda M, Nakayama H (1989) Yield function for soil with anisotropic fabric. J Eng Mech 115:89–104

    Article  Google Scholar 

  24. Qian JG, Du ZB, Yin ZY (2017) Cyclic degradation and non-coaxiality of soft clay subjected to pure rotation of principal stress directions. Acta Geotech. https://doi.org/10.1007/s11440-017-0567-8

    Article  Google Scholar 

  25. Roscoe KH, Schofield A, Wroth CP (1958) On the yielding of soils. Géotechnique 8:22–53

    Article  Google Scholar 

  26. Salager S, Francois B, Nuth M et al (2013) Constitutive analysis of the mechanical anisotropy of Opalinus Clay. Acta Geotech 8:137–154

    Article  Google Scholar 

  27. Symes MJ, Gens A, Hight DW (1984) Undrained anisotropy and principal stress rotation in saturated sand. Géotechnique 34:11–27

    Article  Google Scholar 

  28. Tobita Y, Yanagisawa E (1992) Modified stress tensors for anisotropic behavior of granular materials. Soils Found 32:85–99

    Article  Google Scholar 

  29. Tong ZX, Zhang JM, Yu YL et al (2010) Drained deformation behavior of anisotropic sands during cyclic rotation of principal stress axes. J Geotech Geoenviron Eng 136:1509–1518

    Article  Google Scholar 

  30. Tong ZX, Fu PC, Zhou SP et al (2014) Experimental investigation of shear strength of sands with inherent fabric anisotropy. Acta Geotech 9:257–275

    Article  Google Scholar 

  31. Tsutsumi S, Hashiguchi K (2005) General non-proportional loading behavior of soils. Int J Plast 21:1941–1969

    Article  Google Scholar 

  32. Wan RG, Guo PJ (2001) Drained cyclic behavior of sand with fabric dependence. J Eng Mech 127:1106–1116

    Article  Google Scholar 

  33. Wang ZL, Dafalias YF, Shen CK (1990) Bounding surface hypoplasticity model for sand. J Eng Mech 116:983–1001

    Article  Google Scholar 

  34. Wang Z, Yang YM, Yu HS (2017) Effects of principal stress rotation on the wave-seabed interactions. Acta Geotech 12:97–106

    Article  Google Scholar 

  35. Wu W (1998) Rational approach to anisotropy of sand. Int J Numer Anal Methods Geomech 22:921–940

    Article  Google Scholar 

  36. **e YH, Yang ZX, Barreto D et al (2017) The influence of particle geometry and the intermediate stress ratio on the shear behavior of granular materials. Granul Matter 19:35

    Article  Google Scholar 

  37. Yang ZX, Wu Y (2017) Critical state for anisotropic granular materials: a discrete element perspective. Int J Geomech 17:04016054

    Article  Google Scholar 

  38. Yang YM, Yu HS (2013) A kinematic hardening soil model considering the principal stress rotation. Int J Numer Anal Methods Geomech 37:2106–2134

    Article  Google Scholar 

  39. Yang ZX, Li XS, Yang J (2007) Undrained anisotropy and rotational shear in granular soil. Géotechnique 57:371–384

    Article  Google Scholar 

  40. Yao YP, Sun DA (2000) Application of Lade’s criterion to Cam-clay model. J Eng Mech 126:112–119

    Article  Google Scholar 

  41. Yao YP, Wang ND (2013) Transformed stress method for generalizing soil constitutive models. J Eng Mech 140:614–629

    Article  Google Scholar 

  42. Yao YP, Sun DA, Matsuoka H (2008) A unified constitutive model for both clay and sand with hardening parameter independent on stress path. Comput Geotech 35:210–222

    Article  Google Scholar 

  43. Yao YP, Hou W, Zhou AN (2009) UH model: three-dimensional unified hardening model for overconsolidated clays. Géotechnique 59:451–469

    Article  Google Scholar 

  44. Yao Y, Tian Y, Gao Z (2017) Anisotropic UH model for soils based on a simple transformed stress method. Int J Numer Anal Methods Geomech 41:54–78

    Article  Google Scholar 

  45. Yoshimine M, Ishihara K, Vargas W (1998) Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand. Soils Found 38:179–188

    Article  Google Scholar 

  46. Yu HS, Yang LT, Li X et al (2015) Experimental investigation on the deformation characteristics of granular materials under drained rotational shear. Geomech Geoeng 11:47–63

    Article  Google Scholar 

  47. Zhao J, Guo N (2013) Unique critical state characteristics in granular media considering fabric anisotropy. Géotechnique 63:695–704

    Article  Google Scholar 

  48. Zhu EY, Yao YP (2015) Structured UH model for clays. Transport Geotech 3:68–79

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 11672015 and 51579005), the National Basic Research Program of China (Grant No. 2014CB047001), and the Academic Excellence Foundation of BUAA for PhD Students (Grant No. 2017052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-** Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Explicit expressions of the partial differentials in the plastic flexibility matrix

Appendix: Explicit expressions of the partial differentials in the plastic flexibility matrix

  1. 1.
    $$\frac{\partial f}{{\partial \tilde{\sigma }_{ij} }}$$

According to the chain rule,

$$\frac{\partial f}{{\partial \tilde{\sigma }_{ij} }} = \frac{\partial f}{{\partial \tilde{p}}}\frac{{\partial \tilde{p}}}{{\partial \tilde{\sigma }_{ij} }} + \frac{\partial f}{{\partial \tilde{q}}}\frac{{\partial \tilde{q}}}{{\partial \tilde{\sigma }_{ij} }}$$
(26)

where

$$\frac{{\partial \tilde{p}}}{{\partial \tilde{\sigma }_{ij} }} = \frac{{\delta_{ij} }}{3},\;\;\frac{{\partial \tilde{q}}}{{\partial \tilde{\sigma }_{ij} }} = \frac{{3\left( {\tilde{\sigma }_{ij} - \tilde{p}\delta_{ij} } \right)}}{{2\tilde{q}}} ,$$
(27)

Besides, \(\frac{\partial f}{{\partial \tilde{p}}}\) and \(\frac{\partial f}{{\partial \tilde{q}}}\) can be derived from the yield function (Eq. 13) as follows

$$\frac{\partial f}{{\partial \tilde{p}}} = \frac{1}{{\tilde{p}}}\frac{{\tilde{M}^{2} - \tilde{\eta }^{2} }}{{\tilde{M}^{2} + \tilde{\eta }^{2} }} , \frac{\partial f}{{\partial \tilde{q}}} = \frac{1}{{\tilde{p}}}\frac{2{\tilde{\eta } }}{{\tilde{M}^{2} + \tilde{\eta }^{2} }}$$
(28)
  1. 2.
    $$\frac{\partial f}{{\partial \sigma_{ij} }}$$

First, the partial differential with respect to \(\bar{\sigma }_{ij}\) is calculated by

$$\frac{\partial f}{{\partial \bar{\sigma }_{ij} }} = \frac{\partial f}{{\partial \tilde{p}}}\frac{{\partial \tilde{p}}}{{\partial \bar{\sigma }_{ij} }} + \frac{\partial f}{{\partial \tilde{q}}}\frac{{\partial \tilde{q}}}{{\partial \bar{\sigma }_{ij} }}$$
(29)

Note that one can always get \(\tilde{p} = \bar{p}\) and \(\tilde{q} = \bar{q}_{\text{c}}\) from the transformed stress Eq. (4), so that

$$\frac{{\partial \tilde{p}}}{{\partial \bar{\sigma }_{ij} }} = \frac{{\partial \bar{p}}}{{\partial \bar{\sigma }_{ij} }} = \frac{{\delta_{ij} }}{3},\;\;\frac{{\partial \tilde{q}}}{{\partial \bar{\sigma }_{ij} }} = \frac{{\partial \bar{q}_{\text{c}} }}{{\partial \bar{\sigma }_{ij} }} = \frac{{\left( {\bar{q}_{\text{c}}^{2} - \bar{I}_{1}^{2} } \right)\frac{{\partial \bar{I}_{1} }}{{\partial \bar{\sigma }_{ij} }} + 9\frac{{\partial \bar{I}_{3} }}{{\partial \bar{\sigma }_{ij} }}}}{{2\bar{q}_{\text{c}} \left( {\bar{q}_{\text{c}} - \bar{I}_{1} } \right)}}$$
(30)

Then according to the chain rule, the partial differential with respect to \(\sigma_{ij}\) is equal to

$$\frac{\partial f}{{\partial \sigma_{ij} }} = \frac{\partial f}{{\partial \bar{\sigma }_{kl} }}\frac{{\partial \bar{\sigma }_{kl} }}{{\partial \sigma_{ij} }}$$
(31)

where based on the modified stress Eq. (3),

$$\frac{{\partial \bar{\sigma }_{kl} }}{{\partial \sigma_{ij} }} = \frac{3}{2}\left( {F_{jl} \delta_{ki} + F_{ki} \delta_{jl} } \right) - \left( {F_{ji} - \frac{{\delta_{ji} }}{3}} \right)\delta_{kl}$$
(32)
  1. 3.
    $$\frac{\partial f}{{\partial F_{ij} }}$$

According to the chain rule,

$$\frac{\partial f}{{\partial F_{ij} }} = \frac{\partial f}{{\partial \bar{\sigma }_{kl} }}\frac{{\partial \bar{\sigma }_{kl} }}{{\partial F_{ij} }} = \frac{\partial f}{{\partial \bar{\sigma }_{kl} }}\left[ {\frac{3}{2}\left( {\sigma_{ki} \delta_{jl} + \sigma_{jl} \delta_{ki} } \right) - s_{ji} \delta_{kl} } \right]$$
(33)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Yao, YP. Constitutive modeling of principal stress rotation by considering inherent and induced anisotropy of soils. Acta Geotech. 13, 1299–1311 (2018). https://doi.org/10.1007/s11440-018-0680-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-018-0680-3

Keywords

Navigation