Log in

Probabilistic teleportation via a non-maximally entangled GHZ state

  • Articles
  • Quantum Information
  • Published:
Chinese Science Bulletin

Abstract

We present a scheme for probabilistic teleportation via a non-maximally entangled GHZ state. Quantum teleportation will succeed with a calculable probability. The teleportation process requires the sender to make a generalized Bell state measurement, the cooperator to perform a generalized X basis measurement, and the receiver to perform a collective unitary transformation and to make a measurement on an auxiliary particle. The success probability of the teleportation is given. We also obtain the maximum of the success probability of the teleportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

    Google Scholar 

  2. Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899

    Article  Google Scholar 

  3. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

    Article  Google Scholar 

  4. Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett, 1992, 69: 2881–2884

    Article  Google Scholar 

  5. Raussendorf R, Briegel H J. A one-way quantum computer. Phys Rev Lett, 2001, 86: 5188–5191

    Article  Google Scholar 

  6. Wang X B, Hiroshima T, Tomita A, et al. Quantum information with Gaussian states. Phys Rep, 2007, 448: 1–111

    Article  Google Scholar 

  7. Long G L, Deng F G, Wang C, et al. Quantum secure direct communication and deterministic secure quantum communication. Front Phys China, 2007, 2: 251–272

    Article  Google Scholar 

  8. Bruβ D, DiVincenzo D P, Ekert A, et al. Optimal universal and state-dependent quantum cloning. Phys Rev A, 1998, 57: 2368–2378

    Article  Google Scholar 

  9. Ding S C, ** Z. Review on the study of entanglement in quantum computation speedup. Chinese Sci Bull, 2007, 52: 2161–2166

    Article  Google Scholar 

  10. Braunstein S L, van Loock P. Quantum information with continuous variables. Rev Mod Phys, 2005, 77: 513–577

    Article  Google Scholar 

  11. Vaidman L. Teleportation of quantum states. Phys Rev A, 1994, 49: 1473–1476

    Article  Google Scholar 

  12. Braunstein S L, Kimble H J. Teleportation of continuous quantum variables. Phys Rev Lett, 1998, 80: 869–872

    Article  Google Scholar 

  13. Gordon G, Rigolin G. Generalized teleportation protocol. Phys Rev A, 2006, 73: 042309

    Article  Google Scholar 

  14. Karlsson A, Bourennane M. Quantum teleportation using three-particle entanglement. Phys Rev A, 1998, 58: 4394–4400

    Article  Google Scholar 

  15. Deng F G, Li C Y, Li Y S, et al. Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys Rev A, 2005, 72: 022338

    Article  Google Scholar 

  16. Zhang Z J. Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys Lett A, 2006, 352: 55–58

    Article  Google Scholar 

  17. Li X H, Deng F G. Controlled teleportation. Front Comput Sci China, 2008, 2: 147–160

    Article  Google Scholar 

  18. Gao T, Yan F L, Li Y C. Optimal controlled teleportation. Europhys Lett, 2008, 84: 50001

    Article  Google Scholar 

  19. Gao T, Yan F L, Li Y C. Optimal controlled teleportation via several kinds of three-qubit states. Sci China Ser G-Phys Mech Astron, 2008, 51: 1529–1556

    Article  Google Scholar 

  20. Agrawal P, Pati A K. Probabilistic quantum teleportation. Phys Lett A, 2002, 305: 12–17

    Article  Google Scholar 

  21. Pati A K, Agrawal P. Probabilistic teleportation and quantum operation. J Opt B Quant Semiclass Opt, 2004, 6: S844–S848

    Article  Google Scholar 

  22. Tian D P, Tao Y J, Qin M. Teleportation of an arbitrary two-qubit state based on the non-maximally four-qubit cluster state. Sci China Ser G-Phys Mech Astron, 2008, 51: 1523–1528

    Article  Google Scholar 

  23. Zhang X H, Yang Z Y, Xu P P. Teleporting N-qubit unknown atomic state by utilizing the V-type three-level atom. Sci China Ser G-Phys Mech Astron, 2009, 52: 1034–1038

    Article  Google Scholar 

  24. Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390: 575–579

    Article  Google Scholar 

  25. Furusawa A, Sørensen J L, Braunstein S L, et al. Unconditional quantum teleportation. Science, 1998, 282: 706–709

    Article  Google Scholar 

  26. Nielsen M A, Knill E, Laflamme R. Complete quantum teleportation using nuclear magnetic resonance. Nature, 1998, 396: 52–55

    Article  Google Scholar 

  27. Boschi D, Branca S, De Martini F, et al. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1998, 80: 1121–1125

    Article  Google Scholar 

  28. Gottesman D. Stabilizer codes and quantum error correction. ar**v: quant-ph/9705052

  29. Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys Rev Lett, 1996, 76: 722–725

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FengLi Yan.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 10971247), Hebei Natural Science Foundation of China (Grant Nos. 07M006, F2009000311) and Key Project of Science and Technology Research of Education Ministry of China (Grant No. 207011).

About this article

Cite this article

Yan, F., Yan, T. Probabilistic teleportation via a non-maximally entangled GHZ state. Chin. Sci. Bull. 55, 902–906 (2010). https://doi.org/10.1007/s11434-009-0725-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0725-y

Keywords

Navigation