Log in

Duplication and divergent evolution of the CHS and CHS-like genes in the chalcone synthase (CHS) superfamily

  • Review
  • Published:
Chinese Science Bulletin

Abstract

The enzymes of the CHS-superfamily are responsible for biosynthesis of a wide range of natural products in plants. They are important for flower pigmentation, protection against UV light and defense against phytopathogens. Many plants were found to contain multiple copies of CHS genes. This review summarizes the recent progress in the studies of the CHS-superfamily, focusing on the duplication and divergent evolution of the CHS and CHS-like genes. Comparative analyses of gene structure, expression patterns and catalytic properties revealed extensive differentiation in both regulation and function among duplicate CHS genes. It is also proposed that the CHS-like enzymes in the CHS-superfamily evolved from CHS at different times in various organisms. The CHS-superfamily thus offers a valuable model to study the rates and patterns of sequence divergence between duplicate genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koes, R. E., Quattrocchio, F., Mol, J. N. M., The flavonoid biosynthetic pathway in plants: Function and evolution, BioEssays, 1994, 16: 123–132.

    Article  Google Scholar 

  2. Austin, M. B., Noel, J. P., The chalcone synthase superfamily of type III polyketide synthases, Nat. Prod. Rep., 2003, 20: 79–110.

    Article  Google Scholar 

  3. Ferrer, J. L., Jez, J. M., Bowman, M. E. et al., Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis, Nat. Struct. Biol., 1999, 6: 775–784.

    Google Scholar 

  4. Durbin, M. L., McCaig, B., Clegg, M. T., Molecular evolution of the chalcone synthase multigene family in the morning glory genome, Plant Mol. Biol., 2000, 42: 79–92.

    Article  Google Scholar 

  5. Tropf, S., Lanz, T., Rensing, S. A. et al., Evidence that stibene synthases have developed from chalcone synthases several times in the course of evolution, J. Mol. Evol., 1994, 38: 610–618.

    Article  Google Scholar 

  6. Helariutta, Y., Kotilainen, M., Elomaa, P. et al., Duplication and functional divergence in the chalcone synthase gene family of Asteraceae: Evolution with substrate change and catalytic simplification, Proc. Natl. Acad. Sci. USA, 1996, 93: 9033–9038.

    Article  Google Scholar 

  7. Lukacin, R., Springob, K., Urbanke, C. et al., Native acridone synthases I and II from Ruta graveolens L. form homodimers, FEBS Lett., 1999, 448: 135–140.

    Article  Google Scholar 

  8. Preisig-Muller, R., Gnau, P., Kindl, H., The inducible 9,10-dihydrophenanthrene pathway: Characterization and expression of bibenzyl synthase and s-adenosylhomocysteine hydrolase, Arch. Biochem. Biophys., 1995, 317: 201–207.

    Google Scholar 

  9. Paniego, N. B., Zuurbier, K. W. M., Fung, S. et al., Phlorisovalerophenone synthase, a novel polyketide synthase from hop (Humulus lupulus L.) cones, Eur. J. Biochem., 1999, 262: 612–616.

    Article  Google Scholar 

  10. Schroder, J., A family of plant-specific polyketide synthases: Facts and predictions, Trends Plant Sci., 1997, 2: 373–378.

    Article  Google Scholar 

  11. Ohno, S., Evolution by Gene Duplication, New York: Springer-Verlag, 1970.

    Google Scholar 

  12. Goodman, M., Moore, G. W., Matsuda, G., Darwinian evolution in the genealogy of hemoglobin, Nature, 1975, 253: 603–608.

    Article  Google Scholar 

  13. Li, W. H., Gojobori, T., Rapid evolution of goat and sheep globin genes following gene duplication, Mol. Biol. Evol., 1983, 1: 94–108.

    Google Scholar 

  14. Zhang, L., Vision, T. J., Gaut, B. S., Patterns of nucleotide substitution among simultaneously duplicated gene pairs in Arabidopsis thaliana, Mol. Biol. Evol., 2002, 19: 1464–1473.

    Google Scholar 

  15. Lynch, M., Conery, J. S., The evolutionary fate and consequences of duplicate genes, Science, 2000, 290: 1151–1155.

    Article  Google Scholar 

  16. Force, A., Lynch, M., Pickett, F. B. et al., Preservation of duplicate genes by complementary, degenerative mutations, Genetics, 1999, 151: 1531–1545.

    Google Scholar 

  17. Thornton, J. W., DeSalle, R., Gene family evolution and homology: Genomics meets phylogenetics, Annu. Rev. Genomics Hum. Genet., 2000, 1: 41–73.

    Article  Google Scholar 

  18. Koes, R. E., Spelt, C. E., van den Elzen, P. J. M. et al., Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida, Gene, 1989, 81: 245–257.

    Article  Google Scholar 

  19. Koes, R. E., Spelt, C. E., Mol, J. N. M., The chalcone synthase multigene family of Petunia hybrida (V30): Differential, light-regulated expression during flower development and UV light induction, Plant Mol. Biol., 1989, 12: 213–225.

    Article  Google Scholar 

  20. Clegg, M. T., Durbin, M. L., Flower color variation: A model for the experimental study of evolution, Proc. Natl. Acad. Sci. USA, 2000, 97: 7016–7023.

    Article  Google Scholar 

  21. Yang, J., Gu, H., Yang, Z., Likelihood analysis of the chalcone synthase genes suggests the role of positive selection in morning glories (Ipomoea), J. Mol. Evol., 2004, 58: 54–63.

    Article  Google Scholar 

  22. Durbin, M. L., Denton, A. L., Clegg, M. T., Dynamics of mobile elements activity in chalcone synthase loci in the common morning glory (Ipomoea purpurea), Proc. Natl. Acad. Sci. USA, 2001, 98: 5084–5089.

    Article  Google Scholar 

  23. Hoshino, A., Johzuka-Hisatomi, Y., Iida, S., Gene duplication and mobile genetic elements in the morning glories, Gene, 2001, 265: 1–10.

    Article  Google Scholar 

  24. Ito, M., Ichinose, Y., Kato, H. et al., Molecular evolution and functional relevance of the chalcone synthase genes of pea, Mol. Gen. Genet., 1997, 255: 28–37.

    Google Scholar 

  25. Ryder, T. B., Hedrick, S. A., Bell, J. N. et al., Organization and differential activation of a gene family encoding the plant defense enzyme chalcone synthase in Phaseolus vulgaris, Mol. Gen. Genet., 1987, 210: 219–233.

    Article  Google Scholar 

  26. Loake, G. J., Faktor, O., Lamb, C. J. et al., Combination of H-box [CCTACC(N)7CT] and G-box (CACGTG) cis elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate p-coumaric acid, Proc. Natl. Acad. Sci. USA, 1992, 89: 9230–9234.

    Google Scholar 

  27. Austin, M. B., Bowman, M. E., Ferrer, J. L. et al., An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases, Chem. Biol., 2004, 11: 1179–1194.

    Article  Google Scholar 

  28. Helariutta, Y., Elomaa, P., Kotilainen, M. et al., Chalcone synthase-like genes active during corolla development are differentially expressed and encode enzymes with different catalytic properties in Gerbera hybrida (Asteraceae), Plant Mol. Biol., 1995, 28: 47–60.

    Google Scholar 

  29. Eckermann, S., Schröder, G., Schmidt, J. et al., New pathway to polyketides in plants, Nature, 1998, 96: 390–397.

    Google Scholar 

  30. Jez, J. M., Austin, M. B., Ferrer, J. L. et al., Structural control of polyketide formation in plant-specific polyketide synthases, Chem. Biol., 2000, 7: 919–930.

    Article  Google Scholar 

  31. Yang, J., Huang, J., Gu, H. et al., Duplication and adaptive evolution of the chalcone synthase genes of Dendranthema (Asteraceae), Mol. Biol. Evol., 2002, 19: 1752–1759.

    Google Scholar 

  32. Harashima, S., Takano, H., Ono, K. et al., Chalcone synthase-like gene in the liverwort, Marchantia paleacea var. diptera, Plant Cell Rep., 2004, 23: 167–173.

    Article  Google Scholar 

  33. Huang, J., Qu, L., Yang, J. et al., A preliminary study on the origin and evolution of chalcone synthase (CHS) gene in angiosperms, Acta Bot. Sin., 2004, 46: 10–19.

    Google Scholar 

  34. Yamazaki, Y., Suh, D., Sitthithaworn, W. et al., Diverse chalcone synthase superfamily enzymes from the most primitive vascular plant, Psilotum nudum, Planta, 2001, 214: 75–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Ji.

About this article

Cite this article

Yang, J., Gu, H. Duplication and divergent evolution of the CHS and CHS-like genes in the chalcone synthase (CHS) superfamily. CHINESE SCI BULL 51, 505–509 (2006). https://doi.org/10.1007/s11434-006-0505-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-006-0505-x

Keywords

Navigation