Log in

Generation of ultrafast radially polarized pulses through chirp-assisted femtosecond optical parametric amplification

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Radially polarized beams characterized by an axially symmetric polarization distribution can be sharply focused to produce strong longitudinal fields in the vicinity. Future applications of these beams will be facilitated by the availability of higher powers and shorter durations. Currently, the ultrafast radially polarized pulse is typically generated via wavefront reconstruction from conventional linearly polarized states. Achievable pulse duration and intensity limits are strictly dependent on extra-cavity optics. Herein, a chirp-assisted near-degenerate type-II parametric process is presented as a pulse-energy-scalable method of accessing ultrafast radially polarized pulses. In a proof-of-principle experiment, the broadband gain balance between the orthogonally polarized signal components was realized via controlling the chirp of the pump pulse. Through an analogous pulse-duration transfer effect, the radially polarized signal inherited the temporal and spectral characteristics of the pump pulse and maintained the radial polarization state of each frequency component of the signal. With a shorter pump pulse, the generation of few-cycle radially polarized pulses should be achievable, which may facilitate a wide range of ultrafast applications such as vacuum electron acceleration and high-harmonic generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).

    Article  Google Scholar 

  2. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).

    Article  ADS  Google Scholar 

  3. M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).

    Article  ADS  Google Scholar 

  4. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, Phys. Rev. Lett. 106, 123901 (2011).

    Article  ADS  Google Scholar 

  5. C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P. L. Fortin, N. Thiré, T. Brabec, F. Légaré, J. C. Kieffer, and M. Piché, Appl. Sci. 3, 70 (2013).

    Article  Google Scholar 

  6. N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, Phys. Rev. Lett. 119, 094801 (2017), ar**v: 2004.03979.

    Article  ADS  Google Scholar 

  7. M. Wen, Y. I. Salamin, and C. H. Keitel, Phys. Rev. Appl. 13, 034001 (2020), ar**v: 1903.10406.

    Article  ADS  Google Scholar 

  8. Y. Cao, L. X. Hu, Y. T. Hu, J. Zhao, D. B. Zou, X. H. Yang, F. P. Zhang, F. Q. Shao, and T. P. Yu, Opt. Express 29, 30223 (2021).

    Article  ADS  Google Scholar 

  9. C. Hernández-García, A. Turpin, J. San Román, A. Picón, R. Drevinskas, A. Cerkauskaite, P. G. Kazansky, C. G. Durfee, and Í. J. Sola, Optica 4, 520 (2017).

    Article  ADS  Google Scholar 

  10. F. Kong, C. Zhang, H. Larocque, Z. Li, F. Bouchard, D. H. Ko, G. G. Brown, A. Korobenko, T. J. Hammond, R. W. Boyd, E. Karimi, and P. B. Corkum, Nat. Commun. 10, 2020 (2019).

    Article  ADS  Google Scholar 

  11. D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, Appl. Phys. Lett. 110, 021107 (2017).

    Article  ADS  Google Scholar 

  12. M. Eckerle, T. Dietrich, F. Schaal, C. Pruss, W. Osten, M. A. Ahmed, and T. Graf, Opt. Lett. 41, 1680 (2016).

    Article  ADS  Google Scholar 

  13. W. J. Lai, B. C. Lim, P. B. Phua, K. S. Tiaw, H. H. Teo, and M. H. Hong, Opt. Express 16, 15694 (2008).

    Article  ADS  Google Scholar 

  14. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, Opt. Lett. 32, 1468 (2007).

    Article  ADS  Google Scholar 

  15. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, Opt. Lett. 32, 3549 (2007).

    Article  ADS  Google Scholar 

  16. M. R. Beversluis, L. Novotny, and S. J. Stranick, Opt. Express 14, 2650 (2006).

    Article  ADS  Google Scholar 

  17. V. D’Ambrosio, F. Baccari, S. Slussarenko, L. Marrucci, and F. Sciarrino, Sci. Rep. 5, 7840 (2015).

    Article  ADS  Google Scholar 

  18. M. Beresna, M. Gecevičius, and P. G. Kazansky, Adv. Opt. Photon. 6, 293 (2014).

    Article  Google Scholar 

  19. S. Carbajo, E. Granados, D. Schimpf, A. Sell, K. H. Hong, J. Moses, and F. X. Kärtner, Opt. Lett. 39, 2487 (2014).

    Article  ADS  Google Scholar 

  20. H. Cao, R. S. Nagymihaly, N. Khodakovskiy, V. Pajer, J. Bohus, R. Lopez-Martens, A. Borzsonyi, and M. Kalashnikov, Opt. Express 29, 5915 (2021).

    Article  ADS  Google Scholar 

  21. Y. Zhao, D. Wang, R. Zhao, and Y. Leng, Opt. Express 25, 20866 (2017).

    Article  ADS  Google Scholar 

  22. F. Kong, H. Larocque, E. Karimi, P. B. Corkum, and C. Zhang, Optica 6, 160 (2019).

    Article  ADS  Google Scholar 

  23. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M. C. Chen, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 36, 2755 (2011).

    Article  ADS  Google Scholar 

  24. G. Cerullo, M. Nisoli, and S. De Silvestri, Appl. Phys. Lett. 71, 3616 (1997).

    Article  ADS  Google Scholar 

  25. H. Zhong, C. Liang, S. Dai, J. Huang, S. Hu, C. Xu, and L. Qian, Optica 8, 62 (2021).

    Article  ADS  Google Scholar 

  26. S. Demmler, J. Rothhardt, S. Hädrich, J. Bromage, J. Limpert, and A. Tünnermann, Opt. Lett. 37, 3933 (2012).

    Article  ADS  Google Scholar 

  27. B. Zhou, J. Ma, J. Wang, D. Tang, G. **e, P. Yuan, H. Zhu, and L. Qian, Phys. Rev. A 95, 033841 (2017).

    Article  ADS  Google Scholar 

  28. S. R. Greenfield, and M. R. Wasielewski, Opt. Lett. 20, 1394 (1995).

    Article  ADS  Google Scholar 

  29. Y. Fu, E. J. Takahashi, and K. Midorikawa, Opt. Lett. 40, 5082 (2015).

    Article  ADS  Google Scholar 

  30. G. Cerullo, and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).

    Article  ADS  Google Scholar 

  31. R. Martínez-Herrero, P. M. Mejías, G. Piquero, and V. Ramírez-Sánchez, Opt. Commun. 281, 1976 (2008).

    Article  ADS  Google Scholar 

  32. D. Zhang, Y. Kong, and J. Zhang, Opt. Commun. 184, 485 (2000

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiZhe Zhong.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 92050203), the Natural Science Foundation of Guangdong Province (Grant No. 2020A1515010541), and the Science and Technology Project of Shenzhen (Grant Nos. JCYJ20200109105606426, JCYJ20190808143419622, and JCYJ20190808145016980).

Supporting Information

The supporting information is available online at phys.scichina.com and springer.longhoe.net. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Huang, J., Ren, X. et al. Generation of ultrafast radially polarized pulses through chirp-assisted femtosecond optical parametric amplification. Sci. China Phys. Mech. Astron. 65, 254212 (2022). https://doi.org/10.1007/s11433-021-1868-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1868-3

Navigation