Log in

Phase coupling synchronization of FHN neurons connected by a Josephson junction

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A variety of nonlinear circuits can be tamed to reproduce the main dynamical properties in neural activities for biological neurons while designing reliable artificial synapses for connecting these neural circuits becomes a challenge. In this paper, a Josephson junction is used to build coupling channel for connecting two FitzHugh-Nagumo neural circuits driven by periodical voltage source. The hybrid synapse is designed by using a linear resistor paralleled with a Josephson junction, which can estimate the effect of external magnetic field by generating additive phase error between the junction. Indeed, it activates nonlinear coupling due to phase diversity in the Josephson junction. The coupled circuits are estimated in dimensionless dynamical systems by applying scale transformation on the variables and parameters in neural circuits. In fact, the intrinsic parameters of coupling channel are adjusted to detect the occurrence of synchronization. Bifurcation analysis is calculated to predict and confirm the occurrence of synchronization between two neural circuits. It is found that synchronization can be stabilized between two FHN neural circuits by selecting appropriate values for parameters in the Josephson junction involved in the coupling channel. It gives useful guidance for implementing artificial synapse for signal processing in neural circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szücs A, Varona P, Volkovskii A R, et al. Interacting biological and electronic neurons generate realistic oscillatory rhythms. Neuroreport, 2000, 11: 563–569

    Google Scholar 

  2. Connors B W, Gutnick M J, Prince D A. Electrophysiological properties of neocortical neurons in vitro. J NeuroPhysiol, 1992, 48: 1302–1320

    Google Scholar 

  3. McCusker R H, McCrea K, Zunich S, et al. Insulin-like growth factor-I enhances the biological activity of brain-derived neurotrophic factor on cerebrocortical neurons. J NeuroImmunol, 2006, 179: 186–190

    Google Scholar 

  4. Wang L, Liu S Q. Neural circuit and its functional roles in cerebellar cortex. Neurosci Bull, 2011, 27: 173–184

    Google Scholar 

  5. Izhikevich E M. Which model to use for cortical spiking neurons? IEEE Trans Neural Netw, 2004, 15: 1063–1070

    Google Scholar 

  6. Wang L, Liu S, Zhang J, et al. Burst firing transitions in two-compartment pyramidal neuron induced by the perturbation of membrane capacitance. Neurol Sci, 2012, 33: 595–604

    Google Scholar 

  7. Izhikevich E M. Simple model of spiking neurons. IEEE Trans Neural Netw, 2003, 14: 1569–1572

    Google Scholar 

  8. Lv M, Wang C, Ren G, et al. Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn, 2016, 85: 1479–1490

    Google Scholar 

  9. Ma J, Zhang G, Hayat T, et al. Model electrical activity of neuron under electric field. Nonlinear Dyn, 2019, 95: 1585–1598

    Google Scholar 

  10. Wu F, Ma J, Zhang G. A new neuron model under electromagnetic field. Appl Math Comput, 2019, 347: 590–599

    MathSciNet  MATH  Google Scholar 

  11. Pinto R D, Varona P, Volkovskii A R, et al. Synchronous behavior of two coupled electronic neurons. Phys Rev E, 2000, 62: 2644–2656

    Google Scholar 

  12. Marder E. Variability, compensation, and modulation in neurons and circuits. Proc Natl Acad Sci USA, 2011, 108: 15542–15548

    Google Scholar 

  13. Kyprianidis I M, Papchristou V, Stouboulos I N, et al. Dynamics of coupled chaotic Bonhoeffer-van der Pol oscillators. WSEAS Trans Syst, 2012, 11: 516–526

    Google Scholar 

  14. Pan X C, Fan H W, Wang R B, et al. Contributions of distinct prefrontal neuron classes in reward processing. Sci China Technol Sci, 2014, 57: 1257–1268

    Google Scholar 

  15. Bao H, Hu A, Liu W. Bipolar pulse-induced coexisting firing patterns in two-dimensional Hindmarsh-Rose neuron model. Int J Bifurcation Chaos, 2019, 29: 1950006

    MathSciNet  MATH  Google Scholar 

  16. Medeiros B N S, Minces V, Mindlin G B, et al. An excitable electronic circuit as a sensory neuron model. Int J Bifurcation Chaos, 2012, 22: 1250244

    MathSciNet  Google Scholar 

  17. Bao B, Yang Q, Zhu L, et al. Chaotic bursting dynamics and coexisting multistable firing patterns in 3D autonomous Morris-Lecar model and microcontroller-based validations. Int J Bifurcation Chaos, 2019, 29: 1950134

    MathSciNet  MATH  Google Scholar 

  18. Xu M, Katori Y, Aihara K. Stability analysis on sparsely encoded associative memory with short-term synaptic dynamics. Int J Bifurcation Chaos, 2017, 27: 1730034

    MathSciNet  MATH  Google Scholar 

  19. Swathy P S, Thamilmaran K. Dynamics of SC-CNN based variant of MLC circuit: An experimental study. Int J Bifurcation Chaos, 2014, 24: 1430008

    MathSciNet  MATH  Google Scholar 

  20. ** W Y, Wang A, Ma J, et al. Effects of electromagnetic induction and noise on the regulation of sleep wake cycle. Sci China Technol Sci, 2019, 62: 2113–2119

    Google Scholar 

  21. Zhao Z, Gu H. The influence of single neuron dynamics and network topology on time delay-induced multiple synchronous behaviors in inhibitory coupled network. Chaos Solitons Fractals, 2015, 80: 96–108

    MathSciNet  MATH  Google Scholar 

  22. Qin H, Wang C, Cai N, et al. Field coupling-induced pattern formation in two-layer neuronal network. Physica A-Statistical Mech its Appl, 2018, 501: 141–152

    MathSciNet  Google Scholar 

  23. Jia Y, Gu H. Transition from double coherence resonances to single coherence resonance in a neuronal network with phase noise. Chaos, 2015, 25: 123124

    MathSciNet  MATH  Google Scholar 

  24. Zhang G, Wu F, Hayat T, et al. Selection of spatial pattern on resonant network of coupled memristor and Josephson junction. Commun Nonlinear Sci Numer Simul, 2018, 65: 79–90

    MathSciNet  MATH  Google Scholar 

  25. Tang J, Zhang J, Ma J, et al. Astrocyte calcium wave induces seizurelike behavior in neuron network. Sci China Technol Sci, 2017, 60: 1011–1018

    Google Scholar 

  26. Ma J, Song X, Tang J, et al. Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing, 2015, 167: 378–389

    Google Scholar 

  27. Xu Y, Jia Y, Wang H, et al. Spiking activities in chain neural network driven by channel noise with field coupling. Nonlinear Dyn, 2019, 95: 3237–3247

    MATH  Google Scholar 

  28. Tang J, Zhang J, Ma J, et al. Noise and delay sustained chimera state in small world neuronal network. Sci China Technol Sci, 2019, 62: 1134–1140

    Google Scholar 

  29. Ge M, Jia Y, Kirunda J B, et al. Propagation of firing rate by synchronization in a feed-forward multilayer Hindmarsh-Rose neural network. Neurocomputing, 2018, 320: 60–68

    Google Scholar 

  30. Rakshit S, Bera B K, Perc M, et al. Basin stability for chimera states. Sci Rep, 2017, 7: 2412

    Google Scholar 

  31. Zhang H, Wang Q, Perc M, et al. Synaptic plasticity induced transition of spike propagation in neuronal networks. Commun Nonlinear Sci Numer Simul, 2013, 18: 601–615

    MathSciNet  MATH  Google Scholar 

  32. Lu L, Jia Y, Kirunda J B, et al. Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network. Nonlinear Dyn, 2019, 95: 1673–1686

    Google Scholar 

  33. Ge M, Jia Y, Xu Y, et al. Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh-Rose neural network. Appl Math Computation, 2019, 352: 136–145

    MathSciNet  MATH  Google Scholar 

  34. Wang C, Ma J. A review and guidance for pattern selection in spatiotemporal system. Int J Mod Phys B, 2018, 32: 1830003

    MathSciNet  MATH  Google Scholar 

  35. Ma J, Tang J. A review for dynamics in neuron and neuronal network. Nonlinear Dyn, 2017, 89: 1569–1578

    MathSciNet  Google Scholar 

  36. Wang C, Tang J, Ma J. Minireview on signal exchange between nonlinear circuits and neurons via field coupling. Eur Phys J Spec Top, 2019, 228: 1907–1924

    Google Scholar 

  37. Ma J, Yang Z, Yang L, et al. A physical view of computational neurodynamics. J Zhejiang Univ Sci A, 2019, 20: 639–659

    Google Scholar 

  38. Xu Y, Yao Z, Hobiny A, et al. Differential coupling contributes to synchronization via a capacitor connection between chaotic circuits. Front Inf Technol Electron Eng, 2019, 20: 571–583

    Google Scholar 

  39. Liu Z, Ma J, Zhang G, et al. Synchronization control between two Chua’s circuits via capacitive coupling. Appl Math Computation, 2019, 360: 94–106

    MathSciNet  MATH  Google Scholar 

  40. Liu Z, Wang C, ** W, et al. Capacitor coupling induces synchronization between neural circuits. Nonlinear Dyn, 2019, 97: 2661–2673

    MATH  Google Scholar 

  41. Liu Z, Wang C, Zhang G, et al. Synchronization between neural circuits connected by hybrid synapse. Int J Mod Phys B, 2019, 33: 1950170

    MathSciNet  MATH  Google Scholar 

  42. Yao Z, Ma J, Yao Y, et al. Synchronization realization between two nonlinear circuits via an induction coil coupling. Nonlinear Dyn, 2019, 96: 205–217

    MATH  Google Scholar 

  43. Zhu S, Zhou P, Ma J. Field coupling-induced synchronization via a capacitor and inductor. Chin J Phys, 2019, 62: 9–25

    MathSciNet  Google Scholar 

  44. Nishio Y, Ushida A. On a ring of chaotic circuits coupled by inductors. Commun Comput Sci, 1995, 78: 608–617

    Google Scholar 

  45. Zhang G, Wang C, Alzahrani F, et al. Investigation of dynamical behaviors of neurons driven by memristive synapse. Chaos Solitons Fractals, 2018, 108: 15–24

    MathSciNet  Google Scholar 

  46. Xu Y, Jia Y, Ma J, et al. Synchronization between neurons coupled by memristor. Chaos Solitons Fractals, 2017, 104: 435–442

    Google Scholar 

  47. Xu F, Zhang J, Fang T, et al. Synchronous dynamics in neural system coupled with memristive synapse. Nonlinear Dyn, 2018, 92: 1395–1402

    Google Scholar 

  48. Lv M, Ma J, Yao Y G, et al. Synchronization and wave propagation in neuronal network under field coupling. Sci China Technol Sci, 2019, 62: 448–457

    Google Scholar 

  49. Bao H, Liu W, Hu A. Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction. Nonlinear Dyn, 2019, 95: 43–56

    Google Scholar 

  50. Xu F, Zhang J, ** M, et al. Chimera states and synchronization behavior in multilayer memristive neural networks. Nonlinear Dyn, 2018, 94: 775–783

    Google Scholar 

  51. Takembo C N, Mvogo A, Ekobena Fouda H P, et al. Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network. Nonlinear Dyn, 2019, 95: 1067–1078

    MATH  Google Scholar 

  52. Etémé A S, Tabi C B, Mohamadou A. Firing and synchronization modes in neural network under magnetic stimulation. Commun Nonlinear Sci Numer Simul, 2019, 72: 432–440

    MathSciNet  MATH  Google Scholar 

  53. Parastesh F, Jafari S, Azarnoush H. Traveling patterns in a network of memristor-based oscillators with extreme multistability. Eur Phys J Spec Top, 2019, 228: 2123–2131

    Google Scholar 

  54. Chen C, Chen J, Bao H, et al. Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn, 2019, 95: 3385–3399

    MATH  Google Scholar 

  55. Hongray T, Balakrishnan J, Dana S K. Bursting behaviour in coupled Josephson junctions. Chaos, 2015, 25: 123104

    MathSciNet  Google Scholar 

  56. Hens C, Pal P, Dana S K. Bursting dynamics in a population of oscillatory and excitable Josephson junctions. Phys Rev E, 2015, 92: 022915

    MathSciNet  Google Scholar 

  57. Segall K, Guo S, Crotty P, et al. Phase-flip bifurcation in a coupled Josephson junction neuron system. Physica B-Condensed Matter, 2014, 455: 71–75

    Google Scholar 

  58. Shainline J M, Buckley S M, Mirin R P, et al. Superconducting optoelectronic circuits for neuromorphic computing. Phys Rev Appl, 2017, 7: 034013

    Google Scholar 

  59. Segall K, LeGro M, Kaplan S, et al. Synchronization dynamics on the picosecond time scale in coupled Josephson junction neurons. Phys Rev E, 2017, 95: 032220

    Google Scholar 

  60. Shainline J M, Buckley S M, McCaughan A N, et al. Circuit designs for superconducting optoelectronic loop neurons. J Appl Phys, 2018, 124: 152130

    Google Scholar 

  61. Cheng R, Goteti U S, Hamilton M C. Spiking neuron circuits using superconducting quantum phase-slip junctions. J Appl Phys, 2018, 124: 152126

    Google Scholar 

  62. Shainline J M, Buckley S M, McCaughan A N, et al. Superconducting optoelectronic loop neurons. J Appl Phys, 2019, 126: 044902

    Google Scholar 

  63. Díaz M. J A, Téquita O, Naranjo F. Neuronal synchronization of electrical activity, using the Hodgkin-Huxley model and RCLSJ circuit. Ingenieria y Ciencia, 2016, 12: 93–106

    Google Scholar 

  64. Crotty P, Schult D, Segall K. Josephson junction simulation of neurons. Phys Rev E, 2010, 82: 011914

    Google Scholar 

  65. Han X, Bi Q, Ji P, et al. Fast-slow analysis for parametrically and externally excited systems with two slow rationally related excitation frequencies. Phys Rev E, 2015, 92: 012911

    MathSciNet  Google Scholar 

  66. Han X, Liu Y, Bi Q, et al. Frequency-truncation fast-slow analysis for parametrically and externally excited systems with two slow incommensurate excitation frequencies. Commun Nonlinear Sci Numer Simul, 2019, 72: 16–25

    MathSciNet  MATH  Google Scholar 

  67. Han X, Bi Q, Kurths J. Route to bursting via pulse-shaped explosion. Phys Rev E, 2018, 98: 010201

    Google Scholar 

  68. Liu Z, Zhou P, Ma J, et al. Autonomic learning via saturation gain method, and synchronization between neurons. Chaos Solitons Fractals, 2020, 131: 109533

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11765011), and the HongLiu First-Class Disciplines Development Program of Lanzhou University of Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, C., Tang, J. et al. Phase coupling synchronization of FHN neurons connected by a Josephson junction. Sci. China Technol. Sci. 63, 2328–2338 (2020). https://doi.org/10.1007/s11431-019-1547-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-019-1547-5

Navigation