Log in

Bifurcation analyses and hardware experiments for bursting dynamics in non-autonomous memristive FitzHugh-Nagumo circuit

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, a non-autonomous memristive FitzHugh-Nagumo (FHN) circuit is constructed using a second-order memristive diode bridge with LC network. For convenience of circuit implementation, an AC voltage source is adopted to substitute the original AC current stimulus. Stimulated by the slowly varying AC voltage source, the number, locations and stabilities of the equilibrium points slowly evolve with the time, which are thus indicated as the AC equilibrium points. Different sequences of fold and/or Hopf bifurcations are encountered in a full period of time series evolutions, leading to various kinds of chaotic or periodic bursting activities. To figure out the related bifurcation mechanisms, the fold and Hopf bifurcation sets are mathematically formulated to locate the critical bifurcation points. On this basis, the transitions between the resting and repetitive spiking states are clearly illustrated by the time series of the AC equilibrium points and state variables, from which Hopf/subHopf, Hopf/Hopf, and Hopf/fold bursting oscillations are identified in the specified parameter regions. Finally, based on a fabricated hardware circuit, the experimental measurements are executed. The results verify that the presented memristive FHN circuit indeed exhibits complex bursting activities, which enriches the family of memristor-based FHN circuits with bursting dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duan L X, Lu Q S, Wang Q Y. Two-parameter bifurcation analysis of firing activities in the Chay neuronal model. Neurocomputing, 2008, 72: 341–351

    Article  Google Scholar 

  2. Alidousti J, Ghaziani R K. Spiking and bursting of a fractional order of the modified FitzHugh-Nagumo neuron model. Math Model Comput Simul, 2017, 9: 390–403

    Article  MathSciNet  Google Scholar 

  3. Ma J, Tang J. A review for dynamics in neuron and neuronal network. Nonlinear Dyn, 2017, 89: 1569–1578

    Article  MathSciNet  Google Scholar 

  4. Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952, 117: 500–544

    Article  Google Scholar 

  5. Hindmarsh J L, Rose R M. A model of the nerve impulse using two first-order differential equations. Nature, 1982, 296: 162–164

    Article  Google Scholar 

  6. Wang H X, Wang Q Y, Zheng Y H. Bifurcation analysis for Hind-marsh-Rose neuronal model with time-delayed feedback control and application to chaos control. Sci China Tech Sci, 2014, 57: 872–878

    Article  Google Scholar 

  7. Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophys J, 1981, 35: 193–213

    Article  Google Scholar 

  8. Xu L F, Li C D, Chen L. Contrastive analysis of neuron model. Acta Phys Sin, 2016, 65: 240701

    Google Scholar 

  9. Fitzhugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophys J, 1961, 1: 445–466

    Article  Google Scholar 

  10. Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proc IRE, 1962, 50: 2061–2070

    Article  Google Scholar 

  11. Baltanás J P, Casado J M. Bursting behaviour of the FitzHugh-Nagumo neuron model subject to quasi-monochromatic noise. Physica D, 1998, 122: 231–240

    Article  Google Scholar 

  12. Abbasian A H, Fallah H, Razvan M R. Symmetric bursting behaviors in the generalized FitzHugh-Nagumo model. Biol Cybern, 2013, 107: 465–476

    Article  MathSciNet  MATH  Google Scholar 

  13. Vaidyanathan S. Global chaos control of the FitzHugh-Nagumo chaotic neuron model via integral sliding mode control. Int J Pharm-Tech Res, 2016, 9: 413–425

    Google Scholar 

  14. Li F, Liu Q, Guo H, et al. Simulating the electric activity of Fitzhugh-Nagumo neuron by using Josephson junction model. Nonlinear Dyn, 2012, 69: 2169–2179

    Article  MathSciNet  Google Scholar 

  15. Guo Y F, Wang L J, Wei F, et al. Dynamical behavior of simplified FitzHugh-Nagumo neural system driven by Lévy noise and Gaussian white noise. Chaos Soliton Fract, 2019, 127: 118–126

    Article  Google Scholar 

  16. Wang Z, Campbell S A. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks. Chaos, 2017, 27: 114316

    Article  MathSciNet  MATH  Google Scholar 

  17. Saha A, Feudel U. Extreme events in FitzHugh-Nagumo oscillators coupled with two time delays. Phys Rev E, 2017, 95: 062219

    Article  MathSciNet  Google Scholar 

  18. Shepelev I A, Vadivasova T E, Bukh A V, et al. New type of chimera structures in a ring of bistable FitzHugh-Nagumo oscillators with nonlocal interaction. Phys Lett A, 2017, 381: 1398–1404

    Article  MathSciNet  Google Scholar 

  19. Masoliver M, Masoller C. Sub-threshold signal encoding in coupled FitzHugh-Nagumo neurons. Sci Rep, 2018, 8: 8276

    Article  Google Scholar 

  20. Hu M, Li H, Chen Y R, et al. Memristor crossbar-based neuromorphic computing system: A case study. IEEE Trans Neural Netw Learning Syst, 2014, 25: 1864–1878

    Article  Google Scholar 

  21. Sheridan P M, Cai F X, Du C, et al. Sparse coding with memristor networks. Nat Nanotech, 2017, 12: 784–789

    Article  Google Scholar 

  22. Wang Z R, Li C, Song W Y, et al. Reinforcement learning with analogue memristor arrays. Nat Electron, 2019, 2: 115–124

    Article  Google Scholar 

  23. Ge M Y, Jia Y, Xu Y, et al. Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn, 2018, 91: 515–523

    Article  Google Scholar 

  24. Zhang G, Wang C N, Alzahrani F, et al. Investigation of dynamical behaviors of neurons driven by memristive synapse. Chaos Soliton Fract, 2018, 108: 15–24

    Article  MathSciNet  Google Scholar 

  25. Du L, Cao Z L, Lei Y M, et al. Electrical activities of neural systems exposed to sinusoidal induced electric field with random phase. Sci China Tech Sci, 2019, 62: 1141–1150

    Article  Google Scholar 

  26. Ma J, Mi L, Zhou P, et al. Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl Math Comput, 2017, 307: 321–328

    MathSciNet  MATH  Google Scholar 

  27. Njitacke Z T, Kengne J. Complex dynamics of a 4D Hopfield neural networks (HNNs) with a nonlinear synaptic weight: Coexistence of multiple attractors and remerging Feigenbaum trees. AEU-Int J Electron Commun, 2018, 93: 242–252

    Article  Google Scholar 

  28. Bao H, Liu W B, Hu A H. Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction. Nonlinear Dyn, 2019, 95: 43–56

    Article  Google Scholar 

  29. Lv M, Ma J, Yao Y G, et al. Synchronization and wave propagation in neuronal network under field coupling. Sci China Tech Sci, 2019, 62: 448–457

    Article  Google Scholar 

  30. Mvogo A, Takembo C N, Ekobena Fouda H P, et al. Pattern formation in diffusive excitable systems under magnetic flow effects. Phys Lett A, 2017, 381: 2264–2271

    Article  MathSciNet  Google Scholar 

  31. Ma J, Zhang G, Hayat T, et al. Model electrical activity of neuron under electric field. Nonlinear Dyn, 2019, 95: 1585–1598

    Article  Google Scholar 

  32. Zhang J H, Liao X F. Effects of initial conditions on the synchronization of the coupled memristor neural circuits. Nonlinear Dyn, 2019, 95: 1269–1282

    Article  Google Scholar 

  33. Zhang J H, Liao X F. Synchronization and chaos in coupled memristor-based FitzHugh-Nagumo circuits with memristor synapse. AEU-Int J Electron Commun, 2017, 75: 82–90

    Article  Google Scholar 

  34. Bao H, Liu W B, Chen M. Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh-Nagumo circuit. Nonlinear Dyn, 2019, 96: 1879–1894

    Article  Google Scholar 

  35. Chen M, Qi J W, Xu Q, et al. Quasi-period, periodic bursting and bifurcations in memristor-based FitzHugh-Nagumo circuit. AEU-Int J Electron Commun, 2019, 110: 152840

    Article  Google Scholar 

  36. Izhikevich E M. Neural excitability, spiking and bursting. Int J Bifurcat Chaos, 2000, 10: 1171–1266

    Article  MathSciNet  MATH  Google Scholar 

  37. Guo D Q, Wu S D, Chen M M, et al. Regulation of irregular neuronal firing by autaptic transmission. Sci Rep, 2016, 6: 26096

    Article  Google Scholar 

  38. Lu L L, Jia Y, Xu Y, et al. Energy dependence on modes of electric activities of neuron driven by different external mixed signals under electromagnetic induction. Sci China Tech Sci, 2019, 62: 427–440

    Article  Google Scholar 

  39. Zhang Z D, Li Y Y, Bi Q S. Routes to bursting in a periodically driven oscillator. Phys Lett A, 2013, 377: 975–980

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu H G, Bao B C, Liu Z, et al. Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator. Nonlinear Dyn, 2016, 83: 893–903

    Article  MathSciNet  Google Scholar 

  41. Bi Q S, Li S L, Kurths J, et al. The mechanism of bursting oscillations with different codimensional bifurcations and nonlinear structures. Nonlinear Dyn, 2016, 85: 993–1005

    Article  MathSciNet  Google Scholar 

  42. Chen X K, Li S L, Zhang Z D, et al. Relaxation oscillations induced by an order gap between exciting frequency and natural frequency. Sci China Tech Sci, 2017, 60: 289–298

    Article  Google Scholar 

  43. Bao B C, Wu P Y, Bao H, et al. Symmetric periodic bursting behavior and bifurcation mechanism in a third-order memristive diode bridge-based oscillator. Chaos Soliton Fract, 2018, 109: 146–153

    Article  Google Scholar 

  44. Han C Y, Yu S M, Wang G Y. A sinusoidally driven lorenz system and circuit implementation. Math Probl Eng, 2015, 2015: 706902

    MathSciNet  MATH  Google Scholar 

  45. Xu Q, Zhang Q L, Qian H, et al. Crisis-induced coexisting multiple attractors in a second-order nonautonomous memristive diode bridge-based circuit. Int J Circ Theor Appl, 2018, 46: 1917–1927

    Article  Google Scholar 

  46. Zhao H T, Lin Y P, Dai Y X. Hopf bifurcation and hidden attractor of a modified Chua’s equation. Nonlinear Dyn, 2017, 90: 2013–2021

    Article  MathSciNet  MATH  Google Scholar 

  47. Xue W, Qi G Y, Mu J J, et al. Hopf bifurcation analysis and circuit implementation for a novel four-wing hyper-chaotic system. Chin Phys B, 2013, 22: 080504

    Article  Google Scholar 

  48. Desroches M, Kaper T J, Krupa M. Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster. Chaos, 2013, 23: 046106

    Article  MathSciNet  MATH  Google Scholar 

  49. Premraj D, Suresh K, Banerjee T, et al. An experimental study of slow passage through Hopf and pitchfork bifurcations in a parametrically driven nonlinear oscillator. Commun Nonlinear Sci Numer Simul, 2016, 37: 212–221

    Article  MathSciNet  Google Scholar 

  50. Wu H G, Ye Y, Chen M, et al. Extremely slow passages in low-pass filter-based memristive oscillator. Nonlinear Dyn, 2019, 97: 2339–2353

    Article  Google Scholar 

  51. Gottwald G A, Melbourne I. On the implementation of the 0–1 test for chaos. SIAM J Appl Dyn Syst, 2009, 8: 129–145

    Article  MathSciNet  MATH  Google Scholar 

  52. Savi M A, Pereira-Pinto F H I, Viola F M, et al. Using 0–1 test to diagnose chaos on shape memory alloy dynamical systems. Chaos Soliton Fract, 2017, 103: 307–324

    Article  MathSciNet  Google Scholar 

  53. Rauber P E, Fadel S G, Falcao A X, et al. Visualizing the hidden activity of artificial neural networks. IEEE Trans Vis Comput Graph, 2016, 23: 101–110

    Article  Google Scholar 

  54. Wang Z, Joshi S, Savel’ev S, et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat Electron, 2018, 1: 137–145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BoCheng Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Qi, J., Wu, H. et al. Bifurcation analyses and hardware experiments for bursting dynamics in non-autonomous memristive FitzHugh-Nagumo circuit. Sci. China Technol. Sci. 63, 1035–1044 (2020). https://doi.org/10.1007/s11431-019-1458-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-019-1458-5

Keywords

Navigation