Log in

RETRACTED ARTICLE: TiO2 nanoparticles’ effects on properties of concrete using ground granulated blast furnace slag as binder

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

This article was retracted on 22 July 2021

This article has been updated

Abstract

In the present study, compressive strength, pore structure, thermal behavior and microstructure characteristics of concrete containing ground granulated blast furnace slag and TiO2 nanoparticles as binder were investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Although it negatively impacts the properties of concrete at early ages, ground granulated blast furnace slag up to 45 wt% was found to improve the physical and mechanical properties of concrete at later ages. TiO2 nanoparticles with the average particle size of 15 nm were partially added to concrete with the optimum content of ground granulated blast furnace slag and physical and mechanical properties of the specimens were measured. TiO2 nanoparticle as a partial replacement of cement up to 3 wt% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH)2 amount at the early age of hydration and hence increase compressive strength of concrete. The increased TiO2 nanoparticles’ content of more than 3 wt% may cause reduced compressive strength because of the decreased crystalline Ca(OH)2 content required for C-S-H gel formation and unsuitable dispersed nanoparticles in the concrete matrix. TiO2 nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and less-harm pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Shi C, Qian J. High performance cementing materials from industrial slags: A review. Resour Conserv Recycl, 2000, 29: 195–207

    Article  Google Scholar 

  2. Smith M A. The economic and environmental benefits of increased use of pfa and granulated slag. Resour Policy, 1975, 1(3): 154–170

    Article  MathSciNet  Google Scholar 

  3. Collins R J, Ciesielski S K. Recycling and Use of Waste Materials and By-Products in Highway Construction. National Cooperative Highway Research Program Synthesis of Highway Practice 199. Washington DC: Transportation Research Board, 1994

    Google Scholar 

  4. Afrani I, Rogers C. The effects of different cementing materials and curing on concrete scaling. Cement Concrete Aggregates, 1994, 16: 132–139

    Article  Google Scholar 

  5. Malhotra V M. Properties of fresh and hardened concrete incorporating ground granulated blast furnace slag. In: Malhotra V M, ed. Supplementary Cementing Materials for Concrete. Canada: Minister of Supply and Services, 1987. 291–336

    Chapter  Google Scholar 

  6. Isozaki K. Some properties of alkali-activated slag cements. CAJ Rev, 1986: 120–123

  7. Deng Y, Wu X, Tang M. High strength alkali-slag cement. J Nan**g Inst Chem Technol, 1989: 11(2): 1–7

    Google Scholar 

  8. Shi C, Wu X, Tang M. Hydration of alkali-slag cements at 150°C. Cem Concr Res, 1991, 21: 91–100

    Article  Google Scholar 

  9. Deja J, Malolepszy J. Resistance of alkali-activated slag mortars to chloride solution. In: Proceedings of the Third International Conference on the Use of Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, SP-114, American Concrete Institute, Norway, Chicago, 1989. 1547–1561

    Google Scholar 

  10. Shi C, Shen X, Wu X, et al. Immobilization of radioactive wastes with Portland and alkali-slag cement pastes. Cemento, 1994, 91(2): 97–108

    Google Scholar 

  11. Siliceous By-products for Use in Concrete. Final Report of the 73 BSC RILEM Committee, 1988

  12. Sohaib M M, Ahmed S A, Balaha M M. Effect of fire and cooling mode on the properties of slag mortars. Cem Concr Res, 2001, 31(11): 1533–1538

    Article  Google Scholar 

  13. Detwiler R J, Fapohunda C A, Natale J. Use of supplementary cementing materials to increase the resistance to chloride ion penetration of concretes cured at elevated temperatures. ACI Mater J, 1994, 91(1): 63–66

    Google Scholar 

  14. Ramlochan T, Zacarias P, Thomas M D A, et al. The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature: Part I expansive behaviour. Cem Concr Res, 2003, 33(6): 807–814

    Article  Google Scholar 

  15. Bleszynski R F, Hooton R D, Thomas M D A, et al. Durability of ternary blend concretes with silica fume and blast furnace slag: Laboratory and outdoor exposure site studies. ACI Mater J, 2002, 99(5): 499–508

    Google Scholar 

  16. Qing Y, Zenan Z, Deyu K, et al. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr Build Mat, 2007, 21: 539–545

    Article  Google Scholar 

  17. Jo B W, Kim C H, Tae G H, et al. Characteristics of cement mortar with nano-SiO2 particles. Constr Build Mat, 2007, 21: 1351–1355

    Article  Google Scholar 

  18. Jo B W, Kim C H, Lim J H. Investigations on the development of powder concrete with nano-SiO2 nanoparticles. KSCE J, 2007, 11(1): 37–42

    Article  Google Scholar 

  19. Jo B W, Kim C H, Lim J H. Characteristics of cement mortar with nano-SiO2 particles. ACI Mater J, 2007, 104(7): 404–407

    Google Scholar 

  20. Lin K L, Chang W C, Linc D F, et al. Effects of nano-SiO2 and different ash nanoparticle sizes on sludge ash-cement mortar. J Env Manag, 2008, 8(4): 708–714

    Article  Google Scholar 

  21. Lin D F, Lin K L, Chang W C, et al. Improvements of nano-SiO2 on sludge/fly ash mortar. Waste Manage, 2008, 28(6): 1081–1087

    Article  Google Scholar 

  22. Shih J Y, Chang T P, Hsiao T C. Effect of nanosilica on characteriza tion of Portland cement composite. Cem Con Res, 2006, 36: 697–706

    Article  Google Scholar 

  23. Campillo I, Guerrero A, Dolado J S, et al. Improvement of initial mechanical strength by nanoalumina in belite cements. Mater Lett, 2007, 61: 1889–1892

    Article  Google Scholar 

  24. Li Z, Wang H, He S, et al. Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater Lett, 2006, 60: 356–359

    Article  Google Scholar 

  25. Li H, **ao H, Ou J. A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cem Con Res, 2004, 34: 435–438

    Article  Google Scholar 

  26. Flores-Velez L M, Dominguez O. Characterization and properties of Portland cement composites incorporating zinc-iron oxide nanoparticles. J Mater Sci, 2002, 37: 983–988

    Article  Google Scholar 

  27. Nazari A, Riahi S. Microstructural, thermal, physical and mechanical behavior of the self compacting concrete containing SiO2 nanoparticles. Mater Sci Eng A, 2010, 527: 7663–7672

    Article  Google Scholar 

  28. Nazari A, Riahi S. The effects of TiO2 nanoparticles on flexural damage of self-compacting concrete. Int J Damage Mech, 2010, doi: 10.1177/1056789510385262

  29. Nazari A, Riahi S. The effect of TiO2 nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete. Mater Sci Eng A, 2010, 528(2): 756–763

    Article  Google Scholar 

  30. Nazari A. The effects of curing medium on flexural strength and water permeability of concrete incorporating TiO2 nanoparticles. Mater Struct, 2010, doi: 10.1617/s11527-010-9664-y

  31. Nazari A, Riahi S. The effects of zinc dioxide nanoparticles on flexural strength of self-compacting concrete. Compos Part B-Eng, 2011, 42(2): 167–175

    Article  Google Scholar 

  32. Nazari A, Riahi S. The effects of ZnO2 nanoparticles on split tensile strength of self-compacting concrete. J Exp Nanosc, 2010, doi: 10.1080/17458080.2010.524669

  33. Nazari A, Riahi S. Limewater effects on properties of ZrO2 nanoparticle blended cementitious composite. J Compos Mater, 2010, doi: 10.1177/0021998310376118

  34. Nazari A, Riahi S. Assessment of the effects of Fe2O3 nanoparticles on water permeability, workability, and setting time of concrete. J Compos Mater, 2010, doi: 10.1177/0021998310377945

  35. Nazari A, Riahi S. The effects of limewater on flexural strength and water permeability of Al2O3 nanoparticles binary blended concrete. J Compos Mater, 2010, doi: 10.1177/0021998310378907

  36. Nazari A, Riahi S. The effects of limewater on split tensile strength and workability of Al2O3 nanoparticles binary blended concrete. J Compos Mater, 2010, doi: 10.1177/0021998310378909

  37. Nazari A, Riahi S. The effects of TiO2 nanoparticles on properties of binary blended concrete. J Compos Mater, 2010, doi: 10.1177/0021998310378910

  38. Nazari A, Riahi S. Optimization mechanical properties of Cr2O3 nanoparticle binary blended cementitious composite. J Compos Mater, 2010, doi: 10.1177/0021998310377944

  39. Li H, Zhang M H, Ou J P. Flexural fatigue performance of concrete containing nano-nanoparticles for pavement. Int J Fatigue, 2007, 29: 1292–1301

    Article  Google Scholar 

  40. Li H, Zhang M H, Ou J P. Abrasion resistance of concrete containing nano-nanoparticles for pavement. Wear, 2006, 260: 1262–1266

    Article  Google Scholar 

  41. Katyal N K, Ahluwalia S C, Parkash R. Effect of TiO2 on the hydration of tricalcium silicate. Cem Con Res, 1999, 29: 1851–1855

    Article  Google Scholar 

  42. ASTM C150, Standard Specification for Portland Cement, Annual Book of ASTM Standards. Philadelphia, PA: ASTM, 2001

    Google Scholar 

  43. ASTM C39, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, Philadelphia, PA: ASTM, 2001

    Google Scholar 

  44. Abell A B, Willis K L, Lange D A. Mercury intrusion porosimetry and image nalysis of cement-based materials. J Colloid Interface Sci, 1999, 211: 39–44

    Article  Google Scholar 

  45. Tanaka K, Kurumisawa K. Development of technique for observing pores in hardened cement paste. Cem Con Res, 2002, 32: 1435–1441

    Article  Google Scholar 

  46. Roncero J, Gettu R. Influencia de los superplastificantes en la microestructura de la pasta hidratada y en el comportamiento diferido de los morteros de cemento. Cemento Hormigón, 2002, 832: 12–28

    Google Scholar 

  47. Hans-Ërik G, Pentti P. Properties of SCC-especially early age and long term shrinkage and salt frost resistance. Proceedings of the 1st international RILEM symposium on self-compacting concrete, RILEM Publications S.A.R.L.; Stockholm, 1999. 211–225

  48. Song H W, Byun K J, Kim S H, et al. Early-age creep and shrinkage in self-compacting concrete incorporating GGBFS. Proceedings of the 2nd international RILEM symposium on self-compacting concrete. Tokyo: COMS Engineering Corporation, 2001. 413–422

    Google Scholar 

  49. Hammer T A, Johansen K, Bjøntegaard Ø. Volume changes as driving forces to self-induced cracking of norwegian SCC. Proceedings of the 2nd international RILEM symposium on self-compacting concrete. Tokyo: COMS Engineering Corporation, 2001. 423–432

    Google Scholar 

  50. Turcry P, Loukili A. A study of plastic shrinkage of self-compacting concrete, Proceedings of the 3rd International RILEM Symposium on Self-Compacting Concrete. RILEM Publications S.A.R.L.; Reykjavik, 2003. 576–585

  51. Heirman G, Vandewalle L. The influence of fillers on the properties of self-compacting concrete in fresh and hardened state. Proceedings of the 3rd International RILEM Symposium on Self-Compacting Concrete. RILEM Publications S.A.R.L.; Reykjavik, 2003. 606–618

  52. Ye G, **u X, De Schutter G, et al. Influence of limestone powder as filler in SCC on hydration and microstructure of cement pastes. Cem Con Compos, 2007, 29(2): 94–102

    Article  Google Scholar 

  53. Arya C, Xu Y. Effect of cement type on chloride binding and corrosion of steel in concrete. Cem Concr Res, 1995, 25(4): 893–902

    Article  Google Scholar 

  54. Polder R B, de Rooij. Durability of marine concrete structures-field investigations and modeling. Heron, 2005, 50(3): 133–153

    Google Scholar 

  55. Glass G K, Reddy B, Buenfeld N R. Corrosion inhibition in concrete arising from its acid neutralization capacity. Corros Sci, 2000, 42: 1587–1598

    Article  Google Scholar 

  56. Basheer P A M, Gilleece P R V, Long A E, et al. Monitoring electrical resistance of concretes containing alternative cementitious materials to assess their resistance to chloride penetration. Cem Concr Compos, 2002, 24: 437–449

    Article  Google Scholar 

  57. Puertas F, Santos H, Palacios M, et al. Polycarboxylate superplasticiser admixtures: Effect on hydration, microstructure and rheological behavior. Adv Cem Res, 2005, 17(2): 77–89

    Article  Google Scholar 

  58. Jawed J, Skalny J, Young J F. Hydration of Portland Cement. Structure and Performance of Cements. Barnes P, ed. Essex: Applied Science Publishers, 1983. 284–285

    Google Scholar 

  59. Kondo R, Yoshida K. Miscibility of special elements in tricalcium silicate and alite and the hydration properties of C3S solid solutions. 5th Int Symp on the Chem of Cement, Tokyo, I-262. 1968

  60. Teoreanu I, Muntean M, Balusoiu H. Addition of titanium dioxide to Portland cement clinkers. Il Cemento, 1987. 497–404

  61. Kondo R, Ueda S. Kinetics of hydration of cements. 5th Int Symp on the Chem of Cement, Part 2, 1968. 211

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nazari.

About this article

Cite this article

Nazari, A., Riahi, S. RETRACTED ARTICLE: TiO2 nanoparticles’ effects on properties of concrete using ground granulated blast furnace slag as binder. Sci. China Technol. Sci. 54, 3109–3118 (2011). https://doi.org/10.1007/s11431-011-4421-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4421-1

Keywords

Navigation