Log in

Advances in research of the mid-deep South China Sea circulation

  • Progress
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The South China Sea (SCS) is a large marginal sea connecting the Indian and Pacific oceans. Under the factors of monsoons, strait transport, and varied bathymetry, the SCS presents a three-layer structure and strong diapycnal mixing which is far greater than that in the open ocean. Theoretical analysis and observations reveal that internal tides, internal solitary waves, and strong winds are the sources of the strong mixing in the northern SCS. A major consequence of the strong mixing is an active mid-deep circulation system. This system promotes exchange of water between the SCS and adjacent oceans, and also regulates the upper layer of wind-driven circulation, making the 3 dimensional SCS circulation clearly different from that in other tropical and subtropical marginal seas. The mass transport capacity of the mid-deep circulation has a substantial impact on marine sedimentation, the biogeochemical cycle, and other processes in the SCS. This paper summarizes the recent advances in mid-deep sea circulation dynamics of the SCS, and discusses the opportunities and challenges in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alford M H, MacKinnon J A, Simmons H L, Nash J D. 2016. Near-inertial internal gravity waves in the ocean. Annu Rev Mar Sci, 8: 95–123

    Article  Google Scholar 

  • Alford M H, Peacock T, MacKinnon J A, Nash J D, Buijsman M C, Centurioni L R, Centuroni L R, Chao S Y, Chang M H, Farmer D M, Fringer O B, Fu K H, Gallacher P C, Graber H C, Helfrich K R, Jachec S M, Jackson C R, Klymak J M, Ko D S, Jan S, Johnston T M S, Legg S, Lee I H, Lien R C, Mercier M J, Moum J N, Musgrave R, Park J H, Pickering A I, Pinkel R, Rainville L, Ramp S R, Rudnick D L, Sarkar S, Scotti A, Simmons H L, St Laurent L C, Venayagamoorthy S K, Wang Y H, Wang J, Yang Y J, Paluszkiewicz T, Tang T Y D. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521: 65–69

    Article  Google Scholar 

  • Buijsman M C, Kanarska Y, McWilliams J C. 2010. On the generation and evolution of nonlinear internal waves in the South China Sea. J Geophys Res, 115: C02012

    Google Scholar 

  • Cai S Q. 2015. Internal solitary wave numerical model and its application in the South China Sea. Bei**g: China Ocean Press

    Google Scholar 

  • Cai S Q, **e J S, Xu J X, Wang D X, Chen Z W, Deng X D, Long X M. 2014. Monthly variation of some parameters about internal solitary waves in the South China sea. Deep-Sea Res Part I-Oceanogr Res Pap, 84: 73–85

    Article  Google Scholar 

  • Cai S Q, **e J S, He H Y. 2012. An overview of internal solitary waves in the South China Sea. Surv Geophys, 33: 927–943

    Article  Google Scholar 

  • Cao A, Guo Z, Song J, Lv X, He H, Fan W. 2018. Near-Inertial waves and their underlying mechanisms based on the South China Sea internal wave experiment (2010–2011). J Geophys Res-Oceans, 123: 5026–5040

    Article  Google Scholar 

  • Chang M H, Lien R C, Tang T Y, D’Asaro E A, Yang Y J. 2006. Energy flux of nonlinear internal waves in northern South China Sea. Geophys Res Lett, 33: L03607

    Google Scholar 

  • Chang Y T, Hsu W L, Tai J H, Tang T Y, Chang M H, Chao S Y. 2010. Cold deep water in the South China Sea. J Oceanogr, 66: 183–190

    Article  Google Scholar 

  • Chao S Y, Ko D S, Lien R C, Shaw P T. 2007. Assessing the west ridge of Luzon Strait as an internal wave mediator. J Oceanogr, 63: 897–911

    Article  Google Scholar 

  • Chen G, Wang D, Dong C, Zu T, Xue H, Shu Y, Chu X, Qi Y, Chen H. 2015. Observed deep energetic eddies by seamount wake. Sci Rep, 5: 17416

    Article  Google Scholar 

  • Chen H, **e X, Zhang W, Shu Y, Wang D, Vandorpe T, Van Rooij D. 2016. Deep-water sedimentary systems and their relationship with bottom currents at the intersection of **sha Trough and Northwest Sub-Basin, South China Sea. Mar Geol, 378: 101–113

    Article  Google Scholar 

  • Chen Z W, **e J S, Xu J X, Zhan J M, Cai S Q. 2013. Energetics of nonlinear internal waves generated by tidal flow over topography. Ocean Model, 68: 1–8

    Article  Google Scholar 

  • Chen Z W, **e J, Wang D, Zhan J M, Xu J, Cai S. 2014. Density stratification influences on generation of different modes internal solitary waves. J Geophys Res-Oceans, 119: 7029–7046

    Article  Google Scholar 

  • Chen Z W, Nie Y H, **e J S, Xu J X, He Y H, Cai S Q. 2017. Generation of internal solitary waves over a large sill: From Knight Inlet to Luzon Strait. J Geophys Res-Oceans, 122: 1555–1573

    Article  Google Scholar 

  • Cheng L, Zhang Z W, Zhao W, Tian J W. 2015. Temporal variability of the current in the northeastern South China Sea revealed by 2.5-year-long moored observations. J Oceanogr, 71: 361–372

    Article  Google Scholar 

  • Chu P C, Veneziano J M, Fan C W, Fan C. 2000. Response of the South China Sea to tropical cyclone Ernie. J Geophys Res, 105: 13991–14009

    Article  Google Scholar 

  • Fang G, Wang Y, Wei Z, Fang Y, Qiao F, Hu X. 2009. Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model. Dyn Atmos Oceans, 47: 55–72

    Article  Google Scholar 

  • Ferrari R, Wunsch C. 2009. Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu Rev Fluid Mech, 41: 253–282

    Article  Google Scholar 

  • Gan J P, Liu Z Q, Hui R X. 2016. A three-layer alternating spinning circulation in the South China Sea. J Phys Oceanogr, 46: 2309–2315

    Article  Google Scholar 

  • Han W Y. 1998. Marine Chemistry in the South China Sea (in Chinese). Bei**g: Science Press

    Google Scholar 

  • Huang P, Zhang M, Cai M, Ke H W, Deng H X, Li W Q. 2016. Ventilation time and anthropogenic CO2 in the South China Sea based on CFC-11 measurements. Deep-Sea Res Part I-Oceanogr Res Pap, 116: 187–199

    Article  Google Scholar 

  • Huang X, Wang Z, Zhang Z, Yang Y, Zhou C, Yang Q, Zhao W, Tian J. 2018. Role of mesoscale eddies in modulating the semidiurnal internal tide: Observation results in the northern South China Sea. J Phys Oceanogr, 48: 1749–1770

    Article  Google Scholar 

  • Huang X, Chen Z, Zhao W, Zhang Z, Zhou C, Yang Q, Tian J. 2016. An extreme internal solitary wave event observed in the northern South China Sea. Sci Rep, 6: 30041

    Article  Google Scholar 

  • Huang X, Zhang Z, Zhang X, Qian H, Zhao W, Tian J. 2017. Impacts of a mesoscale eddy pair on internal solitary waves in the northern South China Sea revealed by mooring array observations. J Phys Oceanogr, 47: 1539–1554

    Article  Google Scholar 

  • Jan S, Lien R C, Ting C H. 2008. Numerical study of baroclinic tides in Luzon Strait. J Oceanogr, 64: 789–802

    Article  Google Scholar 

  • Jan S, Chern C S, Wang J, Chao S Y. 2007. Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. J Geophys Res, 112: C06019

    Article  Google Scholar 

  • Klymak J M, Alford M H, Pinkel R, Lien R C, Yang Y J, Tang T Y. 2011. The breaking and scattering of the internal tide on a continental slope. J Phys Oceanogr, 41: 926–945

    Article  Google Scholar 

  • Lan J, Zhang N, Wang Y. 2013. On the dynamics of the South China Sea deep circulation. J Geophys Res-Oceans, 118: 1206–1210

    Article  Google Scholar 

  • Lan J, Wang Y, Cui F, Zhang N. 2015. Seasonal variation in the South China Sea deep circulation. J Geophys Res-Oceans, 120: 1682–1690

    Article  Google Scholar 

  • Li H, Song D, Chen X, Qian H, Mu L, Song J. 2011. Numerical study of M2 internal tide generation and propagation in the Luzon Strait. Acta Oceanol Sin, 30: 23–32

    Article  Google Scholar 

  • Li L, Qu T. 2006. Thermohaline circulation in the deep South China Sea basin inferred from oxygen distributions. J Geophys Res, 111: C05017

    Article  Google Scholar 

  • Li L, Guo X G, Wu R S. 2018. The winter western boundary current of the South China Sea: Physical structure and volume transport in December 1998. Acta Oceanol Sin, 37: 1–7

    Google Scholar 

  • Liang C R, Chen G Y, Shang X D. 2017. Observations of the turbulent kinetic energy dissipation rate in the upper central South China Sea. Ocean Dyn, 67: 597–609

    Article  Google Scholar 

  • Liang C R, Shang X D, Chen G Y. 2019. The vertical heat transport of internal solitary waves over the continental slope in the northern South China Sea. Acta Oceanol Sin, 38: 36–44

    Article  Google Scholar 

  • Lien R C, Tang T Y, Chang M H, D’Asaro E A. 2005. Energy of nonlinear internal waves in the South China Sea. Geophys Res Lett, 32: L05615

    Article  Google Scholar 

  • Liu C J, Yan D, Zhang Q R, Wang D X. 2008. Seasonal variation of subsurface and intermediate water masses in the South China Sea. Oceanol Limnol Sin, 39: 55–64

    Google Scholar 

  • Liu J L, He Y H, Li J, Cai S Q, Wang D, Huang Y D. 2018. Cases study of nonlinear interaction between near-inertial waves induced by typhoon and diurnal tides near the **sha Islands. J Geophys Res-Oceans, 123: 2768–2784

    Article  Google Scholar 

  • Liu Z Y, Lozovatsky I. 2012. Upper pycnocline turbulence in the northern South China Sea. Chin Sci Bull, 57: 2302–2306

    Article  Google Scholar 

  • Liu C J, Wang D X, Chen J, Du Y, **e Q. 2012. Freshening of the intermediate water of the South China Sea between the 1960s and the 1980s. Chin J Ocean Limnol, 30: 1010–1015

    Article  Google Scholar 

  • Lu Z M, Chen G Y, Shang X D. 2009. Fine-scale mixing in the intermediate and deep layers of the South China Sea (in Chinses). J Trop Oceanogr, 28: 1–4

    Google Scholar 

  • Lüdmann T, Wong H K, Berglar K. 2005. Upward flow of North Pacific Deep Water in the northern South China Sea as deduced from the occurrence of drift sediments. Geophys Res Lett, 32: L05614

    Article  Google Scholar 

  • Luyten J, Stommel H. 1986. Gyres driven by combined wind and buoyancy flux. J Phys Oceanogr, 16: 1551–1560

    Article  Google Scholar 

  • Müller P, Liu X. 2000. Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies. J Phys Oceanogr, 30: 532–549

    Article  Google Scholar 

  • Munk W H. 1966. Abyssal recipes. In: Deep Sea Research and Oceanographic Abstracts. Elsevier, 13: 707–730

  • Munk W, Wunsch C. 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res Part I-Oceanogr Res Pap, 45: 1977–2010

    Article  Google Scholar 

  • Nan F, Xue H, Chai F, Wang D, Yu F, Shi M, Guo P, **u P. 2013. Weakening of the Kuroshio intrusion into the South China Sea over the past two decades. J Clim, 26: 8097–8110

    Article  Google Scholar 

  • Nash J D, Kunze E, Toole J M, Schmitt R W. 2004. Internal tide reflection and turbulent mixing on the continental slope. J Phys Oceanogr, 34: 1117–1134

    Article  Google Scholar 

  • Niwa Y, Hibiya T. 2004. Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J Geophys Res, 109: C04027

    Article  Google Scholar 

  • Qu T, Girton J B, Whitehead J A. 2006. Deepwater overflow through Luzon Strait. J Geophys Res, 111: C01002

    Article  Google Scholar 

  • Qu T, Song Y T, Yamagata T. 2009. An introduction to the South China Sea throughflow: Its dynamics, variability, and application for climate. Dyn Atmos Oceans, 47: 3–14

    Article  Google Scholar 

  • Shang X D, Qi Y F, Chen G Y, Liang C R, Lueck R G, Prairie B, Li H. 2017b. An expendable microstructure profiler for deep ocean measurements. J Atmos Ocean Technol, 34: 153–165

    Article  Google Scholar 

  • Shang X D, Qi Y F, Chen G Y, Liang C R. 2015a. Observations of upper layer turbulent mixing in the southern South China Sea. Acta Oceanol Sin, 34: 6–13

    Article  Google Scholar 

  • Shang X D, Liu Q, **e X H, Chen G Y, Chen R Y. 2015b. Characteristics and seasonal variability of internal tides in the southern South China Sea. Deep-Sea Res Part I-Oceanogr Res Pap, 98: 43–52

    Article  Google Scholar 

  • Shang X D, Liang C R, Chen G Y. 2017a. Spatial distribution of turbulent mixing in the upper ocean of the South China Sea. Ocean Sci, 13: 503–519

    Article  Google Scholar 

  • Shao L, Li X J, Geng J H, Pang X, Lei Y C, Qiao P J, Wang L L, Wang H B. 2007. Deep water bottom current deposition in the northern south china sea. Sci China Ser D-Earth Sci, 50: 1060–1066

    Article  Google Scholar 

  • Shu Y, Xue H, Wang D, Chai F, **e Q, Yao J L, **ao J G. 2014. Meridional overturning circulation in the South China Sea envisioned from the high-resolution global reanalysis data GLBa0.08. J Geophys Res-Oceans, 119: 3012–3028

    Article  Google Scholar 

  • Shu Y, Chen J, Li S, Wang Q, Yu J, Wang D. 2019. Field-observation for an anticyclonic mesoscale eddy consisted of twelve gliders and sixty-two expendable probes in the northern South China Sea during summer 2017. Sci China Earth Sci, 62: 451–458

    Article  Google Scholar 

  • Shu Y Q, Xue H J, Wang D X, Chai F, **e Q, Cai S Q, Chen R Y, Chen J, Li J, He Y K. 2016. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea. Sci Rep, 6: 24338

    Article  Google Scholar 

  • Sun H, Wang Q. 2016. Microstructure observations in the upper layer of the South China Sea. J Oceanogr, 72: 777–786

    Article  Google Scholar 

  • Sun H, Yang Q, Zhao W, Liang X, Tian J. 2016. Temporal variability of diapycnal mixing in the northern South China Sea. J Geophys Res-Oceans, 121: 8840–8848

    Article  Google Scholar 

  • Sun Z, Hu J, Zheng Q, Li C Y. 2011. Strong near-inertial oscillations in geostrophic shear in the northern South China Sea. J Oceanogr, 67: 377

    Article  Google Scholar 

  • Tian J, Zhou L, Zhang X, Liang X, Zheng Q, Zhao W. 2003. Estimates of M 2 internal tide energy fluxes along the margin of Northwestern Pacific using TOPEX/POSEIDON altimeter data. Geophys Res Lett, 30, doi: https://doi.org/10.1029/2003GL018008

    Article  Google Scholar 

  • Tian J, Yang Q, Liang X, **e L, Hu D, Wang F, Qu T. 2006. Observation of Luzon Strait transport. Geophys Res Lett, 33: L19607

    Article  Google Scholar 

  • Tian J W, Yang Q X, Zhao W. 2009. Enhanced diapycnal mixing in the South China Sea. J Phys Oceanogr, 39: 3191–3203

    Article  Google Scholar 

  • Wang D, Wang Q, Zhou W, Cai S, Li L, Hong B. 2013. An analysis of the current deflection around Dongsha Islands in the northern South China Sea. J Geophys Res-Oceans, 118: 490–501

    Article  Google Scholar 

  • Wang D, Liu X, Wang W, Du Y, Zhou W. 2004. Simulation of meridional overturning in the upper layer of the South China Sea with an idealized bottom topography. Chin Sci Bull, 49: 740–746

    Article  Google Scholar 

  • Wang D X, **ao J G, Shu Y Q, **e Q, Chen J, Wang Q. 2016. Progress on deep circulation and meridional overturning circulation in the South China Sea. Sci China Earth Sci, 59: 1827–1833

    Article  Google Scholar 

  • Wang G G, **e S P, Qu T, Huang R X. 2011. Deep South China Sea circulation. Geophys Res Lett, 38: L05601

    Google Scholar 

  • Wang G H, Huang R X, Su J L, Chen D K. 2012. The effects of thermohaline circulation on wind-driven circulation in the South China Sea. J Phys Oceanogr, 42: 2283–2296

    Article  Google Scholar 

  • Wang J. 1986. Observation of abyssal flows in the Northern South China Sea. Acta Oceanogr Taiwan, 16: 36–45

    Google Scholar 

  • Wang P X. 2009. Toward scientific breakthrough in the South China Sea (in Chinses). J Trop Oceanogr, 28: 21–28

    Google Scholar 

  • Wang Q, Zeng L, Li J, Chen J, He Y, Yao J, Wang D, Zhou W. 2018. Observed cross-shelf flow induced by mesoscale eddies in the northern South China Sea. J Phys Oceanogr, 48: 1609–1628

    Article  Google Scholar 

  • Wang Q, Zeng L, Shu Y, Li J, Chen J, He Y, Yao J, Wang D, Zhou W. 2019. Energetic topographic Rossby Waves in the northern South China Sea. J Phys Oceanogr, 49: 2697–2714

    Article  Google Scholar 

  • Wang X, Liu Z, Peng S. 2017. Impact of tidal mixing on water mass transformation and circulation in the South China Sea. J Phys Oceanogr, 47: 419–432

    Article  Google Scholar 

  • Wang X W, Peng S, Liu Z, Huang R X, Qian Y K, Li Y. 2016. Tidal mixing in the South China Sea: An estimate based on the internal tide energetics. J Phys Oceanogr, 46: 107–124

    Article  Google Scholar 

  • Wang X H, Zhang W M, Wang P Q, Yang J, Wang Z H. 2018. Research on mid-depth current of basin scale in the South China Sea based on historical Argo observations (in Chinses). Acta Oceanolog Sin, 40: 1–14

    Google Scholar 

  • Wu L D, Miao C B, Zhao W. 2013. Patterns of K1 and M2 internal tides and their seasonal variations in the northern South China Sea. J Oceanogr, 69: 481–494

    Article  Google Scholar 

  • Wunsch C. 1975. Internal tides in the ocean. Rev Geophys, 13: 167–182

    Article  Google Scholar 

  • Wunsch C, Ferrari R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annu Rev Fluid Mech, 36: 281–314

    Article  Google Scholar 

  • **ao J G, **e Q, Liu C J, Chen J, Wang D, Chen M R. 2013. A diagnositic model of the South China Sea bottom circulation in consideration of tidal mixing, eddy-induced mixing and topography (in Chinses). Acta Oceanol Sin, 35: 1–13

    Google Scholar 

  • **ao J, **e Q, Wang D, Yang L, Shu Y, Liu C, Chen J, Yao J, Chen G. 2016. On the near-inertial variations of meridional overturning circulation in the South China Sea. Ocean Sci, 12: 335–344

    Article  Google Scholar 

  • **e J, He Y, Chen Z, Xu J, Cai S. 2015. Simulations of internal solitary wave interactions with mesoscale eddies in the northeastern South China Sea. J Phys Oceanogr, 45: 2959–2978

    Article  Google Scholar 

  • **e X H, Liu Q, Zhao Z X, Shang X D, Cai S Q, Wang D X, Chen D. 2018. Deep sea currents driven by breaking internal tides on the continental slope. Geophys Res Lett, 27: 6160–6166

    Google Scholar 

  • **e X H, Shang X D, Chen G Y, Sun L. 2009. Variations of diurnal and inertial spectral peaks near the bi-diurnal critical latitude. Geophys Res Lett, 36: L02606

    Article  Google Scholar 

  • **e X H, Shang X D, van Haren H, Chen G Y. 2013. Observations of enhanced nonlinear instability in the surface reflection of internal tides. Geophys Res Lett, 40: 1580–1586

    Article  Google Scholar 

  • **e X, Liu Q, Shang X, Chen G, Wang D. 2016. Poleward propagation of parametric subharmonic instability-induced inertial waves. J Geophys Res-Oceans, 121: 1881–1895

    Article  Google Scholar 

  • **e X H, Chen G Y, Shang X D, Fang W D. 2008. Evolution of the semidiurnal (M 2) internal tide on the continental slope of the northern South China Sea. Geophys Res Lett, 35: L13604

    Article  Google Scholar 

  • **e X H, Shang X D, van Haren H, Chen G Y, Zhang Y Z. 2011. Observations of parametric subharmonic instability-induced near-inertial waves equatorward of the critical diurnal latitude. Geophys Res Lett, 38: L05603

    Article  Google Scholar 

  • Xu Z, Liu K, Yin B, Zhao Z, Wang Y, Li Q. 2016. Long-range propagation and associated variability of internal tides in the South China Sea. J Geophys Res-Oceans, 121: 8268–8286

    Article  Google Scholar 

  • Xu Z H, Yin B S, Hou Y J, Liu A K. 2014. Seasonal variability and north-south asymmetry of internal tides in the deep basin west of the Luzon Strait. J Mar Syst, 134: 101–112

    Article  Google Scholar 

  • Xu J P, Barry J P, Paull C K. 2013. Small-scale turbidity currents in a big submarine canyon. Geology, 41: 143–146

    Article  Google Scholar 

  • Yang J, Price J F. 2000. Water-mass formation and potential vorticity balance in an abyssal ocean circulation. J Mar Res, 58: 789–808

    Article  Google Scholar 

  • Yang J Y, Price J F. 2007. Potential vorticity constraint on the flow between two basins. J Phys Oceanogr, 37: 2251–2266

    Article  Google Scholar 

  • Yang Q, Nikurashin M, Sasaki H, Sun H, Tian J W. 2019. Dissipation of mesoscale eddies and its contribution to mixing in the northern South China Sea. Sci Rep, 9: 556

    Article  Google Scholar 

  • Yang Q, Tian J, Zhao W, Liang X F, Zhou L. 2014. Observations of turbulence on the shelf and slope of northern South China Sea. Deep-Sea Res Part I-Oceanogr Res Pap, 87: 43–52

    Article  Google Scholar 

  • Yang Q, Tian J, Zhao W. 2011. Observation of material fluxes through the Luzon Strait. Chin J Ocean Limnol, 29: 26–32

    Article  Google Scholar 

  • Yang Q, Tian J, Zhao W. 2010. Observation of Luzon Strait transport in summer 2007. Deep-Sea Res Part I-Oceanogr Res Pap, 57: 670–676

    Article  Google Scholar 

  • Yang Q, Tian J, Zhao W, **e L. 2013. Turbulent dissipation and mixing in Prydz Bay. Chin J Oceanol Limnol, 31: 445–453

    Article  Google Scholar 

  • Yang Q, Zhao W, Liang X, Dong J H, Tian J W. 2017. Elevated mixing in the periphery of mesoscale eddies in the South China Sea. J Phys Oceanogr, 47: 895–907

    Article  Google Scholar 

  • Yang Q, Zhao W, Liang X, Tian J W. 2016. Three-dimensional distribution of turbulent mixing in the South China Sea. J Phys Oceanogr, 46: 769–788

    Article  Google Scholar 

  • Yang Y J, Fang Y C, Chang MH, Ramp S R, Kao C C, Tang T Y. 2009. Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea. J Geophys Res, 114: C10003, doi: https://doi.org/10.1029/2009JC005318

    Article  Google Scholar 

  • Ye R, Zhou C, Zhao W, Tian J W, Yang Q X, Huang X D, Zhang Z W, Zhao X L. 2019. Variability in the deep overflow through the Heng-Chun Ridge of the Luzon Strait. J Phys Oceanogr, 49: 811–825

    Article  Google Scholar 

  • Yuan D L. 2002. A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport. Acta Oceanol Sin, 21: 187–202

    Google Scholar 

  • Zhang S, **e L, Cao R, Zhao H. 2012. Observation of upper-ocean mixing in the region west of the Luzon Strait in spring. J Coast Res, 28: 1208–1213

    Article  Google Scholar 

  • Zhang X, Huang X, Zhang Z, Zhou C, Tian J, Zhao W. 2018. Polarity variations of internal solitary waves over the continental shelf of the northern South China Sea: Impacts of seasonal stratification, mesoscale eddies, and internal tides. J Phys Oceanogr, 48: 1349–1365

    Article  Google Scholar 

  • Zhang Y W, Tian J W. 2014. Enhanced turbulent mixing induced by strong wind on the South China Sea shelf. Ocean Dyn, 64: 781–796

    Article  Google Scholar 

  • Zhang Y, Liu Z, Zhao Y, Wang W G, Li J R, Xu J P. 2014. Mesoscale eddies transport deep-sea sediments. Sci Rep, 4: 5937

    Article  Google Scholar 

  • Zhang Z, Tian J, Qiu B, Zhao W, Chang P, Wu D, Wan X Q. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the south china sea. Sci Rep, 6: 24349

    Article  Google Scholar 

  • Zhang Z, Zhao W, Tian J, Yang Q X, Qu T D. 2015. Spatial structure and temporal variability of the zonal flow in the luzon strait. J Geophys Res-Oceans, 120: 759–776

    Article  Google Scholar 

  • Zhang Z, Zhao W, Tian J, Liang X. 2013. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. J Geophys Res-Oceans, 118: 6479–6494

    Article  Google Scholar 

  • Zhao W, Zhou C, Tian J, Yang Q X, Wang B, **e L L, Qu T D. 2014. Deep water circulation in the Luzon Strait. J Geophys Res-Oceans, 119: 790–804

    Article  Google Scholar 

  • Zhao X, Zhou C, Xu X, Ye R, Tian J, Zhao W. 2019. Deep circulation in the South China Sea simulated in a regional model. Ocean Sci Discuss, doi: https://doi.org/10.5194/os-2019-29, in review

  • Zhao Z F, Zheng Y F, Wei C S, Wu Y B. 2004. Zircon isotope evidence for recycling of subducted continental crust in post-collisional granitoids from the Dabie terrane in China. Geophys Res Lett, 31: L06302

    Article  Google Scholar 

  • Zheng H B, Yan P. 2012. Deep-water bottom current research in the northern South China Sea. Mar Georesour Geotech, 30: 122–129

    Article  Google Scholar 

  • Zhou C, Zhao W, Tian J, Yang Q X, Huang X D, Zhang Z W, Qu T D. 2018. Observations of deep current at the western boundary of the Northern Philippine Basin. Sci Rep, 8: 14334

    Article  Google Scholar 

  • Zhou C, Zhao W, Tian J, Zhao X L, Zhu Y C, Yang Q X, Qu T D. 2017. Deep western boundary current in the south china sea. Sci Rep, 7: 9303

    Article  Google Scholar 

  • Zhou C, Zhao W, Tian J, Yang Q, Qu T. 2014. Variability of the deep-water overflow in the Luzon Strait. J Phys Oceanogr, 44: 2972–2986

    Article  Google Scholar 

  • Zhu M, Graham S, Pang X, McHargue T. 2010. Characteristics of migrating submarine canyons from the middle Miocene to present: Implications for paleoceanographic circulation, northern South China Sea. Mar Pet Geol, 27: 307–319

    Article  Google Scholar 

  • Zhu Y, Fang G, Wei Z, Wang Y, Teng F, Qu T. 2016. Seasonal variability of the meridional overturning circulation in the South China Sea and its connection with inter-ocean transport based on SODA2.2.4. J Geophys Res-Oceans, 121: 3090–3105

    Article  Google Scholar 

  • Zhu Y, Sun J, Wang Y, Wei Z, Yang D, Qu T. 2017. Effect of potential vorticity flux on the circulation in the South China Sea. J Geophys Res-Oceans, 122: 6454–6469

    Article  Google Scholar 

  • Zu T, Gan J, Erofeeva S Y. 2008. Numerical study of the tide and tidal dynamics in the South China Sea. Deep-Sea Res Part I-Oceanogr Res Pap, 55: 137–154

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFC1405701), the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDJ-SSW-DQC022), the National Natural Science Foundation of China (Grant Nos. 41521005, 41730535, 41776036, 41676001 & 41776026), and the National Key Research and Development Program (Grant No. 2017YFA0603201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongxiao Wang or Qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wang, Q., Cai, S. et al. Advances in research of the mid-deep South China Sea circulation. Sci. China Earth Sci. 62, 1992–2004 (2019). https://doi.org/10.1007/s11430-019-9546-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9546-3

Keywords

Navigation