Log in

Distribution of n-alkanes in Miocene loess in Qinan, western Chinese Loess Plateau, and its palaeoenvironmental implications

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Neogene eolian successions are one of the most important terrestrial palaeoenvironmental archives in East Asia. However, they have received far less attention than Quaternary loess deposits, especially in the case of lipid biomarker analysis. In order to obtain a better insight into the early-middle Miocene palaeoenvironment, we conducted a study of n-alkane biomarkers from sediments of the QA-I section (Qinan) in the western Chinese Loess Plateau, and compared the results with those of previous n-alkane analyses of eolian and aquatic sediments of varying age. Our principal results are as follows: (1) All QA-I samples contain n-alkanes ranging from C14 to C35, among which the relative content of short-chain n-alkanes (C14–C20) from microorganisms is significantly greater than that of long-chain n-alkanes (C26–C35) from the waxes of terrestrial higher plants; the main peak is at C16–C18. All samples have a relatively lower abundance of medium-chain n-alkanes (C21–C25) than that of long- and short-chain n-alkanes, similar to strongly weathered palaeosols in Quaternary loess and Late Miocene-Pliocene Hipparion Red-Earth; however, this distribution is significantly different from that in weakly-weathered loess of Quaternary loess and Late Miocene-Pliocene Hipparion Red-Earth, as well as from aquatic sediments. (2) Despite some odd-over-even carbon predominance of long-chain n-alkanes in the QA-I samples, the carbon preference index (CPI) values are significantly lower than those of most of the weakly-weathered sediments. Our results show that strong weathering and microbial processes have significantly altered the n-alkanes in the Miocene eolian deposits in Qinan, and led to a significant oxidation and degradation of long-chain n-alkanes and the predominance of short-chain n-alkanes from bacteria. Therefore, the contribution of microorganism to total organic carbon (TOC) and its resulting in carbon isotopic composition should be carefully assessed in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An Z S. 2014. Late Cenozoic Climate Change in Asia: Loess, Monsoon and Monsoon-Arid Environment Evolution. Netherlands: Springer. 582

    Book  Google Scholar 

  • Baas M, Pancost R, van Geel B, Sinninghe Damsté J S. 2000. A comparative study of lipids in Sphagnum species. Org Geochem, 31: 535–541

    Article  Google Scholar 

  • Bai Y, Fang X, Nie J, Wang Y, Wu F. 2009. A preliminary reconstruction of the paleoecological and paleoclimatic history of the Chinese Loess Plateau from the application of biomarkers. Palaeogeogr Palaeoclimatol Palaeoecol, 271: 161–169

    Article  Google Scholar 

  • Duan Y, Wu B, Xu L, He J, Sun T. 2011. Characterisation of n-alkanes and their hydrogen isotopic composition in sediments from Lake Qinghai, China. Org Geochem, 42: 720–726

    Article  Google Scholar 

  • Eglinton T I, Eglinton G. 2008. Molecular proxies for paleoclimatology. Earth Planet Sci Lett, 275: 1–16

    Article  Google Scholar 

  • Eglinton G, Hamilton R J. 1967. Leaf epicuticular waxes. Science, 156: 1322–1335

    Article  Google Scholar 

  • Ficken K J, Li B, Swain D L, Eglinton G. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem, 31: 745–749

    Article  Google Scholar 

  • Freeman K H, Colarusso L A. 2001. Molecular and isotopic records of C4 grassland expansion in the late miocene. Geochim Cosmochim Acta, 65: 1439–1454

    Article  Google Scholar 

  • Guo Z T, Ge J Y, **ao G Q, Hao Q Z, Wu H B, Zhan T, Liu L, Qin L, Zeng F M, Yuan B Y. 2010. Comment on “Mudflat/distal fan and shallow lake sedimentation (upper Vallesian-Turolian) in the Tianshui Basin, Central China: Evidence against the late Miocene eolian loess” by A. M. Alonso-Zarza, Z. Zhao, C. H. Song, J. J. Li, J. Zhang, A. Martín-Pérez, R. Martín-García, X. X. Wang, Y. Zhang and M.H. Zhang [Sedimentary Geology 222 (2009) 42–51]. Sediment Geol, 230: 86–89

    Google Scholar 

  • Guo Z T, Ruddiman W F, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J, Yuan B Y, Liu T S. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416: 159–163

    Article  Google Scholar 

  • Guo Z T, Sun B, Zhang Z S, Peng S Z, **ao G Q, Ge J Y, Hao Q Z, Qiao Y S, Liang M Y, Liu J F, Yin Q Z, Wei J J. 2008. A major reorganization of Asian climate by the early Miocene. Clim Past, 4: 153–174

    Article  Google Scholar 

  • Ge J, Guo Z, Zhan T, Yao Z, Deng C, Oldfield F. 2012. Magnetostratigraphy of the **he loess-soil sequence and implication for late Neogene deformation of the West Qinling Mountains. Geophys J Int, 189: 1399–1408

    Article  Google Scholar 

  • Han J, Calvin M. 1969. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. Proc Natl Acad Sci USA, 64: 436–443

    Article  Google Scholar 

  • Hao Q, Guo Z. 2004. Magnetostratigraphy of a late Miocene-Pliocene loesssoil sequence in the western Loess Plateau in China. Geophys Res Lett, 31: L09209

    Article  Google Scholar 

  • Hao Q, Guo Z. 2007. Magnetostratigraphy of an early-middle Miocene loess-soil sequence in the western Loess Plateau of China. Geophys Res Lett, 34: L18305

    Article  Google Scholar 

  • Hao Q, Oldfield F, Bloemendal J, Guo Z. 2008. The magnetic properties of loess and paleosol samples from the Chinese Loess Plateau spanning the last 22 million years. Palaeogeogr Palaeoclimatol Palaeoecol, 260: 389–404

    Article  Google Scholar 

  • Huang Y, Bol R, Harkness D D, Ineson P, Eglinton G. 1996. Post-glacial variations in distributions, 13C and 14C contents of aliphatic hydrocarbons and bulk organic matter in three types of British acid upland soils. Org Geochem, 24: 273–287

    Article  Google Scholar 

  • Huang X, Meyers P A, Xue J, Wang X, Zheng L. 2014a. Cryptic abundance of long-chain iso and anteiso alkanes in the Dajiuhu peat deposit, central China. Org Geochem, 66: 137–139

    Article  Google Scholar 

  • Huang X, Xue J, Meyers P A, Gong L, Wang X, Liu Q, Qin Y, Wang H. 2014b. Hydrologic influence on the d13C variation in long chain n-alkanes in the Dajiuhu peatland, central China. Org Geochem, 69: 114–119

    Article  Google Scholar 

  • Hui Z, Li J, Xu Q, Song C, Zhang J, Wu F, Zhao Z. 2011. Miocene vegetation and climatic changes reconstructed from a sporopollen record of the Tianshui Basin, NE Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 308: 373–382

    Article  Google Scholar 

  • Ladygina N, Dedyukhina E G, Vainshtein M B. 2006. A review on microbial synthesis of hydrocarbons. Process Biochem, 41: 1001–1014

    Article  Google Scholar 

  • Li F J, Wu N Q, Pei Y P, Hao Q Z, Rousseau D D. 2006a. Wind-blown origin of Dongwan late Miocene-Pliocene dust sequence documented by land snail record in western Chinese Loess Plateau. Geology, 34: 405–408

    Article  Google Scholar 

  • Li F J, Wu N Q, Rousseau D D. 2006b. Preliminary study of mollusk fossils in the Qinan Miocene loess-soil sequence in western Chinese Loess Plateau. Sci China Ser D-Earth Sci, 49: 724–730

    Article  Google Scholar 

  • Liang M Y, Guo Z T, Kahmann A J, Oldfield F. 2009. Geochemical characteristics of the Miocene eolian deposits in China: Their provenance and climate implications. Geochem Geophys Geosyst, 10: Q04004

    Article  Google Scholar 

  • Liang M, Wang Z, Zhou S, Zong K, Hu Z. 2014. The provenance of Gansu Group in Longxi region and implications for tectonics and paleoclimate. Sci China Earth Sci, 57: 1221–1228

    Article  Google Scholar 

  • Liu J, Guo Z, Qiao Y, Hao Q, Yuan B. 2006. Eolian origin of the Miocene loess-soil sequence at Qin’an, China: Evidence of quartz morphology and quartz grain-size. Chin Sci Bull, 51: 117–120

    Article  Google Scholar 

  • Liu T S, Ding Z L. 1998. Chinese loess and the paleomonsoon. Annu Rev Earth Planet Sci, 26: 111–145

    Article  Google Scholar 

  • Liu T S. 2009. Loess and Arid Environment. Hefei: Anhui Science and Technology Press. 537

    Google Scholar 

  • Liu W G, Huang Y S. 2006. Compound specific D/H ratios and molecular distributions of higher plant leaf waxes as novel paleoenvironmental indicators in the Chinese Loess Plateau. Org Geochem, 36: 851–860

    Article  Google Scholar 

  • Liu W, Yang H, Ning Y, An Z. 2007. Contribution of inherent organic carbon to the bulk d13C signal in loess deposits from the arid western Chinese Loess Plateau. Org Geochem, 38: 1571–1579

    Article  Google Scholar 

  • Luo P, Peng P A, Lü H Y, Zheng Z, Wang X. 2012. Latitudinal variations of CPI values of long-chain n-alkanes in surface soils: Evidence for CPI as a proxy of aridity. Sci China Earth Sci, 55: 1134–1146

    Article  Google Scholar 

  • Oldfield F, Hao Q Z, Bloemendal J, Gibbs-Eggar Z, Patil S, Guo Z T. 2009. Links between bulk sediment particle size and magnetic grain-size: General observations and implications for Chinese loess studies. Sedimentology, 56: 2091–2106

    Article  Google Scholar 

  • Pancost R D, Sinninghe Damsté J S. 2003. Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chem Geol, 195: 29–58

    Article  Google Scholar 

  • Peng T, Li J, Song C, Guo B, Liu J, Zhao Z, Zhang J. 2016. An integrated biomarker perspective on Neogene-Quaternary climatic evolution in NE Tibetan Plateau: Implications for the Asian aridification. Quat Int, 399: 174–182

    Article  Google Scholar 

  • Peng T, Li J, Song C, Zhao Z, Zhang J, Hui Z, King J W. 2012. Biomarkers challenge early Miocene loess and inferred Asian desertification. Geophys Res Lett, 39: L06702

    Article  Google Scholar 

  • Qiang X, An Z, Song Y, Chang H, Sun Y, Liu W, Ao H, Dong J, Fu C, Wu F, Lu F, Cai Y, Zhou W, Cao J, Xu X, Ai L. 2011. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Sci China Earth Sci, 54: 136–144

    Article  Google Scholar 

  • Qiao Y S, Guo Z T, Hao Q Z, Yin Q Z, Yuan B Y, Liu T S. 2006. Grain-size features of a Miocene loess-soil sequence at Qinan: Implications on its origin. Sci China Ser D-Earth Sci, 49: 731–738

    Article  Google Scholar 

  • Rao Z G, Jia G D, Zhu Z Y, Wu Y, Zhang J W. 2008. Comparison of the carbon isotope composition of total organic carbon and long-chain n-alkanes from surface soils in eastern China and their significance. Chin Sci Bull, 53: 3921–3927

    Google Scholar 

  • Rao Z, Zhu Z, Wang S, Jia G, Qiang M, Wu Y. 2009. CPI values of terrestrial higher plant-derived long-chain n-alkanes: A potential paleoclimatic proxy. Front Earth Sci China, 3: 266–272

    Article  Google Scholar 

  • Rielley G, Collier R J, Jones D M, Eglinton G. 1991. The biogeochemistry of Ellesmere Lake, U.K.—I: Source correlation of leaf wax inputs to the sedimentary lipid record. Org Geochem, 17: 901–912

    Article  Google Scholar 

  • Sun X J, Song C Q, Wang F Y, Sun M R. 1997. Vegetation history of the Loess Plateau of China during the last 100000 years based on pollen data. Quat Int, 37: 25–36

    Article  Google Scholar 

  • Volkman J K, Barrett S M, Blackburn S I, Mansour M P, Sikes E L, Gelin F. 1998. Microalgal biomarkers: A review of recent research developments. Org Geochem, 29: 1163–1179

    Article  Google Scholar 

  • Wang L, Lü H Y, Wu N Q, Li J, Pei Y P, Tong G B, Peng S Z. 2006. Palynological evidence for Late Miocene–Pliocene vegetation evolution recorded in the red clay sequence of the central Chinese Loess Plateau and implication for palaeoenvironmental change. Palaeogeogr Palaeoclimatol Palaeoecol, 241: 118–128

    Article  Google Scholar 

  • Wang Y, Fang X, Zhang T, Li Y, Wu Y, He D, Gao Y, Meng P, Wang Y. 2012. Distribution of biomarkers in lacustrine sediments of the Linxia Basin, NE Tibetan Plateau, NW China: Significance for climate change. Sediment Geol, 243-244: 108–116

    Article  Google Scholar 

  • Wang Z X, Liang M Y, Sun Y Q, Dai G W. 2017. Cenozoic tectonic and geomorphic evolution of the Longxi region in northeastern Tibetan Plateau interpreted from detrital zircon. Sci China Earth Sci, 60: 256–267

    Article  Google Scholar 

  • Wei G, Li X H, Liu Y, Shao L, Liang X. 2006. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea. Paleoceanography, 21: PA4214

    Article  Google Scholar 

  • Wentzel A, Ellingsen T E, Kotlar H K, Zotchev S B, Throne-Holst M. 2007. Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol, 76: 1209–1221

    Article  Google Scholar 

  • Willers C, Jansen van Rensburg P J, Claassens S. 2015. Microbial signature lipid biomarker analysis—An approach that is still preferred, even amid various method modifications. J Appl Microbiol, 118: 1251–1263

    Article  Google Scholar 

  • **ao G Q. 2013. Biomarker records across the Eocene-Oligocene climate transition from the **ning Basin, Northwestern China. Post-Doctoral Report. Wuhan: China University of Geosciences

    Google Scholar 

  • **e S, Guo J, Huang J, Chen F, Wang H, Farrimond P. 2004a. Restricted utility of d13C of bulk organic matter as a record of paleovegetation in some loess-Paleosol sequences in the Chinese Loess Plateau. Quat res, 62: 86–93

    Article  Google Scholar 

  • **e S C, Chen F H, Wang Z Y, Wang H M, Gu Y S, Huang Y S. 2003. Lipid distributions in loess-paleosol sequences from northwest China. Org Geochem, 34: 1071–1079

    Article  Google Scholar 

  • **e S C, Nott C J, Avsejs L A, Maddy D, Chambers F M, Evershed R P. 2004b. Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction. Geochim Cosmochim Acta, 68: 2849–2862

    Article  Google Scholar 

  • **e S C, Wang Z Y, Wang H M, Chen F H, An C B. 2002. The occurrence of a grassy vegetation over the Chinese Loess Plateau since the last interglacier: The molecular fossil record. Sci China Ser D-Earth Sci, 45: 53–62

    Article  Google Scholar 

  • Yuan B Y, Guo Z T, Hao Q Z, Peng S Z, Qiao Y S, Wu H B, **ao G Q, Ge J Y, Sun B, Zhou X, Yin Q Z, Liang M Y, Qin L, Liu L, Yao Z Q, Liu T. 2007. Cenozoic evolution of geomorphic and sedimentary environments in the Tianshui-Qin’an regions (in Chinese). Quat Sci, 27: 161–171

    Google Scholar 

  • Zachos J C, Dickens G R, Zeebe R E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451: 279–283

    Article  Google Scholar 

  • Zhan T, Guo Z T, Wu H B, Ge J Y, Zhou X, Wu C L, Zeng F M. 2011. Thick Miocene eolian deposits on the Huajialing Mountains: The geomorphic evolution of the western Loess Plateau. Sci China Earth Sci, 54: 241–248

    Article  Google Scholar 

  • Zhang H C, Yang M S, Zhang W X, Lei G L, Chang F Q, Pu Y, Fan H F. 2008. Molecular fossil and paleovegetation records of paleosol S4 and adjacent loess layers in the Luochuan loess section, NW China. Sci China Ser D-Earth Sci, 51: 321–330

    Article  Google Scholar 

  • Zhang Z H, Zhao M X, Eglinton G, Lu H Y, Huang C Y. 2006. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr. Quat Sci Rev, 25: 575–594

    Article  Google Scholar 

  • Zhang Z H, Zhao M X, Lu H Y, Faiia A M. 2003. Lower temperature as the main cause of C4 plant declines during the glacial periods on the Chinese Loess Plateau. Earth Planet Sci Lett, 214: 467–481

    Article  Google Scholar 

  • Zhong Y X, Chen F H, An C B, **e S C, Huang X Y. 2007. Holocene vegetation cover in Qin’an area of western Chinese Loess Plateau revealed by n-alkane. Chin Sci Bull, 52: 1692–1698

    Article  Google Scholar 

  • Zhou B, Wali G, Peterse F, Bird M I. 2016. Organic carbon isotope and molecular fossil records of vegetation evolution in central Loess Plateau since 450 kyr. Sci China Earth Sci, 59: 1206–1215

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Associate Professor **anyu Huang for his advice regarding the experiments and data analysis, two anonymous reviewers for their useful suggestions, and Professor Jan Bloemendal (at University of Liverpool of UK) for language editing. This study was financially supported by National Natural Science Foundation of China (Grant Nos. 41430531, 41202249 & 41125011) and the China Geological Survey (Grant No. 1212011121261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiaHeng Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., **ao, G., Wang, Z. et al. Distribution of n-alkanes in Miocene loess in Qinan, western Chinese Loess Plateau, and its palaeoenvironmental implications. Sci. China Earth Sci. 60, 921–928 (2017). https://doi.org/10.1007/s11430-016-9013-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-9013-6

Keywords

Navigation