Log in

The transport of water in subduction zones

  • Review
  • Special Topic: Water in the Earth’s interior
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The transport of water from subducting crust into the mantle is mainly dictated by the stability of hydrous minerals in subduction zones. The thermal structure of subduction zones is a key to dehydration of the subducting crust at different depths. Oceanic subduction zones show a large variation in the geotherm, but seismicity and arc volcanism are only prominent in cold subduction zones where geothermal gradients are low. In contrast, continental subduction zones have low geothermal gradients, resulting in metamorphism in cold subduction zones and the absence of arc volcanism during subduction. In very cold subduction zone where the geothermal gradient is very low (≤5°C/km), lawsonite may carry water into great depths of ≤300 km. In the hot subduction zone where the geothermal gradient is high (>25°C/km), the subducting crust dehydrates significantly at shallow depths and may partially melt at depths of <80 km to form felsic melts, into which water is highly dissolved. In this case, only a minor amount of water can be transported into great depths. A number of intermediate modes are present between these two end-member dehydration modes, making subduction-zone dehydration various. Low-T/low-P hydrous minerals are not stable in warm subduction zones with increasing subduction depths and thus break down at forearc depths of ≤60–80 km to release large amounts of water. In contrast, the low-T/low-P hydrous minerals are replaced by low-T/high-P hydrous minerals in cold subduction zones with increasing subduction depths, allowing the water to be transported to subarc depths of 80–160 km. In either case, dehydration reactions not only trigger seismicity in the subducting crust but also cause hydration of the mantle wedge. Nevertheless, there are still minor amounts of water to be transported by ultrahigh-pressure hydrous minerals and nominally anhydrous minerals into the deeper mantle. The mantle wedge overlying the subducting slab does not partially melt upon water influx for volcanic arc magmatism, but it is hydrated at first with the lowest temperature at the slab-mantle interface, several hundreds of degree lower than the wet solidus of hydrated peridotites. The hydrated peridotites may undergo partial melting upon heating at a later time. Therefore, the water flux from the subducting crust into the overlying mantle wedge does not trigger the volcanic arc magmatism immediately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott D, Drury R, Smith W H F. 1994. Flat to steep transition in subduction style. Geology, 22: 937–940

    Article  Google Scholar 

  • Abers G A, van Keken P E, Kneller E A, Ferris A, Stachni J C. 2006. The thermal structure of subduction zones constrained by seismic imaging: Implications for slab dehydration and wedge flow. Earth Planet Sci Lett, 241: 387–397.

    Article  Google Scholar 

  • Akaogi M, Akimoto S I. 1980. High-pressure stability of a dense hydrous magnesian silicate Mg23Si8O42H6 and some geophysical implications. J Geophys Res, 85: 6944–6948

    Article  Google Scholar 

  • Alonso-Perez R, Muentener O, Ulmer P. 2009. Igneous garnet and amphibole fractionation in the roots of island arcs: Experimental constraints on andesitic liquids. Contrib Mineral Petrol, 157: 541–558

    Article  Google Scholar 

  • Anderson R N, Uyeda S, Miyashiro A. 1976. Geophysical and geochemical constraints at converging plate boundaries—Part I: Dehydration in the downgoing slab. Geophys J Int, 44: 333–357

    Article  Google Scholar 

  • Anderson R N, Delong S E, Schwarz W M. 1978. Thermal model for subduction with dehydration in the downgoing slab. J Geol, 86: 731–739

    Article  Google Scholar 

  • Angiboust S, Wolf S, Burov E, Agard P, Yamato P. 2012. Effect of fluid circulation on subduction interface tectonic processes: Insights from thermo-mechanical numerical modelling. Earth Planet Sci Lett, 357: 238–248

    Article  Google Scholar 

  • Arcay D, Tric E, Doin M P. 2005. Numerical simulations of subduction zones: Effect of slab dehydration on the mantle wedge dynamics. Phys Earth Planet Inter, 149: 133–153

    Article  Google Scholar 

  • Arcay D, Tric E, Doin M P. 2007. Slab surface temperature in subduction zones: Influence of the interplate decoupling depth and upper plate thinning processes. Earth Planet Sci Lett, 255: 324–338

    Article  Google Scholar 

  • Arcay D, Lallemand S, Doin M-P. 2008. Back-arc strain in subduction zones: statistical observations versus numerical modeling. Geochem Geophys Geosyst, 9: Q05015

    Article  Google Scholar 

  • Atherton M P, Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362: 144–146

    Article  Google Scholar 

  • Auzanneau E, Vielzeuf D, Schmidt M W. 2006. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol, 152: 125–148

    Article  Google Scholar 

  • Bailey E, Holloway J R. 2000. Experimental determination of elastic properties of talc to 800°C, 0.5 GPa; calculations of the effect on hydrated peridotite, and implications for cold subduction zones. Earth Planet Sci Lett, 183: 487–498

    Article  Google Scholar 

  • Bebout G E. 2007. Metamorphic chemical geodynamics of subduction zones. Earth Planet Sci Lett, 260: 373–393

    Article  Google Scholar 

  • Bebout G E, Agard P, Kobayashi K, Moriguti T, Nakamura E. 2013. Devolatilization history, and related trace element mobility, in deeply subducted sedimentary rocks: SIMS evidence from Western Alps HP/UHP suites. Chem Geol, 342: 1–20

    Article  Google Scholar 

  • Bebout G E. 2014. Chemical and isotopic cycling in subduction zones. In: Hollan H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier. 703–747

    Chapter  Google Scholar 

  • Behn M D, Kelemen P B, Hirth G, Hacker B R, Massonne H-J. 2011. Diapirs as the source of the sediment signature in arc lavas. Nature Geosci, 4: 641–646

    Article  Google Scholar 

  • Bird P. 1978. Stress and temperatures in subduction shear zones: Tonga and Mariana. Geophys J Roy Astr Soc, 55: 411–434

    Article  Google Scholar 

  • Boettcher A L, Wyllie P J. 1969. The system CaO-SiO2-CO2-H2O—III. Second critical end-point on the melting curve. Geochim Cosmochim Acta, 33: 611–632

    Article  Google Scholar 

  • Bolfan-Casanova N. 2005. Water in the Earth’s mantle. Mineral Mag, 69: 229–257

    Article  Google Scholar 

  • Bose K, Ganguly J. 1995. Experimental and theoretical studies of the stabilities of talc, antigorite and phase A at high pressures with applications to subduction processes. Earth Planet Sci Lett, 136: 109–121

    Article  Google Scholar 

  • Bouilhol P, Magni V, van Hunen J, Kaislaniemi L. 2015. A numerical approach to melting in warm subduction zones. Earth Planet Sci Lett, 411: 37–44

    Article  Google Scholar 

  • Burnley P C, Navrotsky A. 1996. Synthesis of high-pressure hydrous magnesium silicates: Observations and analysis. Am Mineral, 81: 317–326

    Article  Google Scholar 

  • Cagnioncle A M, Parmentier E M, Elkins-Tanton L T. 2007. Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries. J Geophys Res, 112: B09402

    Google Scholar 

  • Cannaó E, Agostini S., Scambelluri M, Tonarini S, Godard M. 2015. B, Sr, and Pb isotope geochemistry of high pressure Alpine peridotites reveals element recycling during dehydration of serpentinized precursors in subduction mélange (Cima di Gagnone, Swiss Central Alps). Geochim Cosmochim Acta, 163: 80–100

    Article  Google Scholar 

  • Chen R-X, Zheng Y-F, Hu Z. 2012. Episodic fluid action during exhumation of deeply subducted continental crust: Geochemical constraints from zoisite-quartz vein and host metabasite in the Dabie orogen. Lithos, 155: 146–166

    Article  Google Scholar 

  • Chopin C. 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet Sci Lett, 212: 1–14

    Article  Google Scholar 

  • Clarke G L, Powell R, Fitzherbert J. 2006. A. The lawsonite paradox: A comparison of field evidence and mineral equilibria modelling. J Metamorph Geol, 24: 715–725

    Article  Google Scholar 

  • Cooper L B, Ruscitto D M, Plank T, Wallace P J, Syracuse E M, Manning C E. 2012. Global variations in H2O/Ce. 1. Slab surface temperatures beneath volcanic arcs. Geochem Geophys Geosyst. 1. (3), Q03024; doi:10.1029/2011GC003902

    Google Scholar 

  • Dasgupta R, Hirschmann M, Withers A C. 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 227: 73–85

    Article  Google Scholar 

  • Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662–665

    Article  Google Scholar 

  • Delany J M, Helgeson H C. 1978. Calculation of the thermodynamic consequences of dehydration in subducting oceanic crust to 100 kb and > 800 °C. Am J Sci, 278: 638–686

    Article  Google Scholar 

  • Deschamps F, Godard M, Guillot S, Hattori K. 2013. Geochemistry of subduction zone serpentinites: A review. Lithos, 178: 96–127

    Article  Google Scholar 

  • Doglioni C, Tonarini S, Innocenti F. 2009. Mantle wedge asymmetries and geochemical signatures along W- and E-NE-directed subduction zones. Lithos, 113: 179–189

    Article  Google Scholar 

  • Domanik K J, Holloway J R. 1996. The stability and composition of phengitic muscovite and associated phases from 5.5 to 1. GPa: Implications for deeply subducted sediments. Geochim Cosmochim Acta, 60: 4133–4150

    Article  Google Scholar 

  • Dorbath C, Gerbault M, Carlier G, Guiraud M. 2008. Double seismic zone of the Nazca plate in northern Chile: High-resolution velocity structure, petrological implications, and thermomechanical modeling. Geochem Geophy Geosyst, 9: Q07006

    Article  Google Scholar 

  • Drummond M S, Defant M J, Kepezhinskas P K. 1996. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Trans Roy Soc Edinburgh Earth Sci, 87: 205–215

    Article  Google Scholar 

  • Dvir O, Pettke T, Fumagalli P, Kessel R. 2011. Fluids in the peridotite- water system up to 6 GPa and 800°C: New experimental constrains on dehydration reactions. Contrib Mineral Petrol, 161: 829–844

    Article  Google Scholar 

  • England P, Engdahl R, Thatcher W. 2004. Systematic variation in the depths of slabs beneath arc volcanoes. Geophys J Int, 156: 377–408

    Article  Google Scholar 

  • Ernst W G. 1999. Hornblende, the continent maker—Evolution of H2O during circum-Pacific subduction versus continental collision. Geology, 27: 675–678

    Article  Google Scholar 

  • Ernst W G, Liou J G, Coleman R G. 1995. Comparative petrotectonic study of five Eurasian ultrahigh-pressure metamorphic complexes. Intern Geol Rev, 37: 191–211

    Article  Google Scholar 

  • Espurt N, Funiciello F, Martinod J, Guillaume B, Regard V, Faccenna C, Brusset S. 2008. Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling. Tectonics, 27: TC3011, doi: 10.1029/2007TC002175

  • Evans B W. 2004. The serpentinite multisystem revisited: Chrysotile is metastable. Intern Geol Rev, 46: 479–506

    Article  Google Scholar 

  • Faccenda M. 2014. Water in the slab: A trilogy. Tectonophys, 614: 1–30

    Article  Google Scholar 

  • Fischer K M, Ford H A, Abt D L, Rychert C A. 2010. The lithosphereasthenosphere boundary. Annu Rev Earth Planet Sci, 38: 551–575

    Article  Google Scholar 

  • Forneris J F, Holloway J R. 2003. Phase equilibria in subducting basaltic crust: Implications for H2O release from the slab. Earth Planet Sci Lett, 214: 187–201

    Article  Google Scholar 

  • Forneris J F, Holloway J R. 2004. Evolution of mineral compositions during eclogitization of subducting basaltic crust. Am Mineral, 89: 1516–1524

    Article  Google Scholar 

  • Fryer P, Wheat C G, Mottl M J. 1999. Mariana blueschist mud volcanism: Implications for conditions within the subduction zone. Geology, 27: 103–106

    Article  Google Scholar 

  • Fumagalli P, Poli S. 2005. Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. J Petrol, 46: 555–578

    Article  Google Scholar 

  • Fumagalli P, Zanchetta S, Poli S. 2009. Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: A high-pressure study. Contrib Mineral Petrol, 158: 723–737

    Article  Google Scholar 

  • Furukawa Y. 1993. Depth of the decoupling plate interface and thermal structure under arcs. J Geophys Res, 98: 20005–20013

    Article  Google Scholar 

  • Gasparik to 1993. The role of volatiles in the transition zone. J Geophys Res, 98: 4287–4299

    Article  Google Scholar 

  • George R, Turner S, Morris J, Plank T, Hawkesworth C, Ryan J. 2005. Pressure-temperature-time paths of sediment recycling beneath the Tonga-Kermadec arc. Earth Planet Sci Lett, 233: 195–211

    Article  Google Scholar 

  • Gerya T V, Stöckhert B, Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21: 6–19

    Article  Google Scholar 

  • Gerya T V, Yuen D A. 2003. Rayleigh - Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth Planet Sci Lett, 212: 47–62

    Article  Google Scholar 

  • Gerya T V, Meilick F I. 2011. Geodynamic regimes of subduction under an active margin: Effects of rheological weakening by fluids and melts. J Metamorph Geol, 29: 7–31

    Article  Google Scholar 

  • Gill J. 1981. Orogenic Andesites and Plate Tectonics. New York: Springer-Verlag

    Book  Google Scholar 

  • Gorman P J, Kerrick D M, Connolly J A D. 2006. Modeling open system metamorphic decarbonation of subducting slabs. Geochem Geophys Geosyst, 7: Q04007

    Article  Google Scholar 

  • Grassi D, Schmidt M W. 2011a. Melting of carbonated pelites at 8–13 GPa: Generating K-rich carbonatites for mantle metasomatism. Contrib Mineral Petrol, 162: 169–191

    Article  Google Scholar 

  • Grassi D, Schmidt M W. 2011b. The melting of carbonated pelites fro. 7. to 70. km depth. J Petrol, 52: 765–789

    Article  Google Scholar 

  • Green D H. 1973. Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and waterundersaturated conditions. Earth Planet Sci Lett, 19: 37–53

    Article  Google Scholar 

  • Green D H, Hibberson W O, Kovacs I, Rosenthal A. 2010. Water and its influence on the lithosphere-asthenosphere boundary. Nature, 467: 448–451

    Article  Google Scholar 

  • Green D H, Hibberson W O, Rosenthal A, Kovacs I, Yaxley G M, Falloon T J, Brink F. 2014. Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J Petrol, 55: 2067–2096

    Article  Google Scholar 

  • Green D H. 2015. Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth’s upper mantle. Phys Chem Minerals, 42: 95–122

    Article  Google Scholar 

  • Groppo C, Castelli D. 2010. Prograde P-T evolution of a lawsonite eclogite from the Monviso meta-ophiolite (Western Alps): Dehydration and redox reactions during subduction of oceanic FeTi-oxide gabbro. J Petrol, 51: 2489–2514

    Article  Google Scholar 

  • Grove T L, Chatterjee N, Parman S W, Médard E. 2006. The influence of H2O on mantle wedge melting. Earth Planet Sci Lett, 249: 74–89

    Article  Google Scholar 

  • Grove T L, Till C B, Krawczynski M J. 2012. The Role of H2O in Subduction Zone Magmatism. Annu Rev Earth Planet Sci, 40: 413–439

    Article  Google Scholar 

  • Guillot S, Hattori K. 2013. Serpentinites: Essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life. Elements, 9: 95–98

    Article  Google Scholar 

  • Guillot S, Schwartz S, Reynard B, Agard P, Prigent C. 2015. Tectonic significance of serpentinites. Tectonophysics, 646: 1–19

    Article  Google Scholar 

  • Gutscher M-A, Maury R, Eissen J-P, Bourdon E. 2000a. Can slab melting be caused by flat subduction? Geology, 28: 535–538

    Article  Google Scholar 

  • Gutscher M-A, Spakman W, Bijwaard H, Engdahl E R. 2000b. Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. Tectonics, 19: 814–833

    Article  Google Scholar 

  • Hacker B R, Peacock S M, Abers G A, Holloway S D. 2003. Subduction factory. 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J Geophys Res, 108. 2030. doi: 10.1029/2001JB001129

    Google Scholar 

  • Hacker B R. 2008. H2O subduction beyond arcs. Geochem Geophys Geosyst, 9: Q03001

    Article  Google Scholar 

  • Hattori K H, Guillot S. 2003. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 31: 525–528

    Article  Google Scholar 

  • Hebert L B, Antoshechkina P, Asimow P, Gurnis M. 2009. Emergence of a low-viscosity channel in subduction zones through the coupling of mantle flow and thermodynamics. Earth Planet Sci Lett, 278: 243–256

    Article  Google Scholar 

  • Hermann J, Green D H. 2001. Experimental constraints on high pressure melting in subducted crust. Earth Planet Sci Lett, 188: 149–168

    Article  Google Scholar 

  • Hermann J. 2002. Experimental constraints on phase relations in subducted continental crust. Contrib Mineral Petrol, 143: 219–235

    Article  Google Scholar 

  • Hermann J, Spandler C, Hack A, Korsakov A V. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos, 92: 399–417

    Article  Google Scholar 

  • Hermann J, Spandler C J. 2008. Sediment melts at sub-arc depths: An experimental study. J Petrol, 49: 717–740

    Article  Google Scholar 

  • Hermann J, Rubatto D. 2009. Accessory phase control on the trace element signature of sediment melts in subduction zones. Chem Geol, 265: 512–526

    Article  Google Scholar 

  • Hermann J, Rubatto D. 2014. Subduction of continental crust to mantle depth: geochemistry of ultrahigh-pressure rocks. Treatise Geochem, 4: 309–340

    Article  Google Scholar 

  • Herzberg C, Condie K, Korenaga J. 2010. Thermal history of the Earth and its petrological expression. Earth Planet Sci Lett, 292: 79–88

    Article  Google Scholar 

  • Hilairet N, Reynard B, Wang Y, Daniel I, Merkel S, Nishiyama N, Petitgirard S. 2007. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science, 318: 1910–1913

    Article  Google Scholar 

  • Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett, 90: 297–314

    Article  Google Scholar 

  • Honda S. 1985. Thermal structure beneath Tohoku, northeast Japan. Tectonophysics, 112: 69–102

    Article  Google Scholar 

  • Huang W L, Wyllie P J. 1973. Melting relations of muscovite-granite to 3. kbar as a model for fusion of metamorphosed subducted oceanic sediments. Contrib Mineral Petrol, 42: 1–14

    Article  Google Scholar 

  • Hyndman R D, Wang K L. 1993. Thermal constraints on the zone of major thrust earthquake failure: The Cascadia subduction zone. J Geophys Res, 98: 2039–2060

    Article  Google Scholar 

  • Hyndman R D, Peacock S M. 2003. Serpentinization of the forearc mantle. Earth Planet Sci Lett, 212: 417–432

    Article  Google Scholar 

  • Inoue T, Wada T, Sasaki R, Yurimoto H. 2010. Water partitioning in the Earth’s mantle. Phys Earth Planet Inter, 183: 245–251

    Article  Google Scholar 

  • Inoue T, Yurimoto H, Kudoh Y. 1995. Hydrous modified spinel, Mg1.75SiH0.5O4: A new water reservoir in the mantle transition region. Geophys Res Lett, 22: 117–120

    Article  Google Scholar 

  • Irifune T, Ringwood A E, Hibberson W O. 1994. Subduction of continental crust and terrigenous and pelagic sediments: An experimental study. Earth Planet Sci Lett, 126: 351–368

    Article  Google Scholar 

  • Iwamori H. 1998. Transportation of H2O and melting in subduction zones. Earth Planet Sci Lett, 160: 65–80

    Article  Google Scholar 

  • Iwamori H, Nakakuki to 2013. Fluid processes in subduction zones and water transport to the deep mantle. In: Shun-Ichiro Karato, ed. Physics and Chemistry of the Deep Earth. Wiley. 372–391

    Chapter  Google Scholar 

  • Jagoutz O E. 2010. Construction of the granitoid crust of an island arc. Part II: A quantitative petrogenetic model. Contrib Mineral Petrol, 160: 359–381

    Article  Google Scholar 

  • Jagoutz O, Müntener O, Schmidt M W, Burg J P. 2011. The roles of fluxand decompression melting and their respective fractionation lines for continental crust formation: Evidence from the Kohistan arc. Earth Planet Sci Lett, 303: 25–36

    Article  Google Scholar 

  • Johnson E R, Wallace P J, Delgado Granados H, Manea V C, Kent A J R, Bindeman I N, Donegan C S. 2009. Subduction-related volatile recycling and magma generation beneath Central Mexico: Insights from melt inclusions, oxygen isotopes and geodynamic models. J Petrol, 50: 1729–1764

    Article  Google Scholar 

  • Kanzaki M. 1991. Stability of hydrous magnesium silicates in the mantle transition zone. Phys Earth Planet Inter, 66: 307–312

    Article  Google Scholar 

  • Karato S I, Jung H. 2003. Effects of pressure on high-temperature dislocation creep in olivine. Philos Mag, 83: 401–414

    Article  Google Scholar 

  • Karato S I. 2011. Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet Sci Lett, 301: 413–423

    Article  Google Scholar 

  • Kawamoto T, Hervig R L, Holloway J R. 1996. Experimental evidence for a hydrous transition zone in the early Earth’s mantle. Earth Planet Sci Lett, 142: 587–592

    Article  Google Scholar 

  • Kawamoto T, Holloway J R. 1997. Melting temperature and partial melt chemistry to H2O-saturated mantle peridotite to 1. gigapascals. Science, 276: 240–243

    Article  Google Scholar 

  • Kawamoto to 2004. Hydrous phase stability and partial melt chemistry of H2O-saturated KLB-1 peridotite up to the uppermost lower mantle conditions. Phys Earth Planet Inter, 143-144: 387–395

    Article  Google Scholar 

  • Kawamoto T, Kanzaki M, Mibe K, Matsukage K N, Ono S. 2012. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism. Proc Natl Acad Sci, 109: 18695–18700

    Article  Google Scholar 

  • Kawamoto T, Yoshikawa M, Kumagai Y, Mirabueno M H T, Okuno M, Kobayashi to 2013. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. Proc Natl Acad Sci, 110: 9663–9668

    Article  Google Scholar 

  • Kay R W. 1978. Aleutian magnesian andesites: Melts from subducted Pacific ocean crust. J Volcanol Geotherm Res, 4: 117–132

    Article  Google Scholar 

  • Kennedy G C, Wasserburg G J, Heard H C, Newton R C. 1962. The upper three-phase region in the system SiO2-H2O. Am J Sci, 260: 501–521

    Article  Google Scholar 

  • Kessel R, Schmidt M W, Ulmer P, Pettke to 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180km depth. Nature, 437: 724–727

    Article  Google Scholar 

  • Kincaid C, Sacks I S. 1997. Thermal and dynamical evolution of the upper mantle in subduction zones. J Geophys Res, 102: 12295–12315

    Article  Google Scholar 

  • Kirby S H, Durham W B, Stern L A. 1991. Mantle phase changes and deep-earthquake faulting in subducting lithosphere. Science, 252: 216–225

    Article  Google Scholar 

  • Kirby S, Engdahl R E, Denlinger R. 1996. Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs. In: Bebout E, Schol D W, Kirby S H, Blatt J P, eds. Subduction: Top to Bottom. Geophys Monograph Ser, 96: 195–214

    Google Scholar 

  • Klimm K, Blundy J D, Green T H. 2008. Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. J Petrol, 49: 523–553

    Article  Google Scholar 

  • Konrad-Schmolke M, O’Brien P J, Zack to 2011. Fluid migration above a subducted slab-constraints on amount, pathways and major element mobility from partially overprinted eclogite-facies rocks (Sesia Zone, Western Alps). J Petrol, 52: 457–486

    Article  Google Scholar 

  • Konzett J, Ulmer P. 1999. The stability of hydrous potassic phases in lherzolitic mantle-An experimental study to 9.5 GPa in simplified and natural bulk compositions. J Petrol, 40: 629–652

    Article  Google Scholar 

  • Kudoh Y, Nagase T, Mizohata H, Ohtani E, Sasaki S, Tanaka M. 1997. Structure and crystal chemistry of phase G, a new hydrous magnesium silicate synthesized at 22 GPa and 1050°C. Geophys Res Lett, 24: 1051–1054

    Article  Google Scholar 

  • Kushiro I, Syono Y, Akimoto S I. 1968. Melting of a peridotite nodule at high pressures and high water pressures. J Geophys Res, 73: 6023–6029

    Article  Google Scholar 

  • Kushiro I. 1970. Stability of amphibole and phlogopite in the upper mantle. Carnegie Institute of Washington Yearbook, 68: 245–247

    Google Scholar 

  • Lagabrielle Y, Guivel C, Maury R C, Bourgois J, Fourcade S, Martin H. 2000. Magmatic-tectonic effects of high thermal regime at the site of active ridge subduction: The Chile Triple Junction model. Tectonophysics, 326: 255–268

    Article  Google Scholar 

  • Lallemand S, Heuret A, Boutelier D. 2005. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochem Geophys Geosyst, 6: Q09006, doi: 10.1029/2005GC000917

    Article  Google Scholar 

  • Lambert I B, Wyllie P J. 1972. Melting of gabbro (quartz eclogite) with excess water to 3. kilobars, with geological applications. J Geol, 80: 693–708

    Article  Google Scholar 

  • Leng W, Mao W. 2015. Geodynamic modeling of thermal structure of subduction zones. Sci China Earth Sci, 58: 1070–1083

    Article  Google Scholar 

  • Li X, Jeanloz R. 1991. Phases and electrical conductivity of a hydrous silicate assemblage at lower-mantle conditions. Nature, 350: 332–334

    Article  Google Scholar 

  • Li Z H. 2014. A review on the numerical geodynamic modeling of continental subduction, collision and exhumation. Sci China Earth Sci, 57: 47–69

    Article  Google Scholar 

  • Li Z H, Liu M Q, Gerya to 2015. Material transportation and fluid-melt activity in the subduction channel: Numerical modeling. Sci China Earth Sci, 58: 1251–1268

    Article  Google Scholar 

  • Liou J G, Zhang R Y, Ernst W G, Rumble D, Maruyama S. 1998. High-pressure minerals from deeply subducted metamorphic rocks. Rev Mineral, 37: 33–96

    Google Scholar 

  • Liou J G, Ernst W G, Zhang R Y, Tsujimori T, Jahn B M. 2009. Ultrahigh-pressure minerals and metamorphic terranes—The view from China. J Asian Earth Sci, 35: 199–231

    Article  Google Scholar 

  • Liu L G. 1986. Phase transformations in serpentine at high pressures and temperatures and implications for subducting lithosphere. Phys Earth Planet Inter, 42: 255–262

    Article  Google Scholar 

  • Liu L G. 1987. Effects of H2O on the phase behaviour of the forsterite-enstatite system at high pressures and temperatures and implications for the Earth. Phys Earth Planet Inter, 49: 142–167

    Article  Google Scholar 

  • Luth R W. 1995. Is phase A relevant to the Earth’s mantle? Geochim Cosmochim Acta, 59: 679–682

    Article  Google Scholar 

  • Magni V, Faccenna C, van Hunen J, Funiciello F. 2014. How collision triggers backarc extension: Insight into mediterranean style of extension from 3-d numerical models. Geology, 42: 511–514

    Article  Google Scholar 

  • Mann P, Taira A. 2004. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone. Tectonophysics, 389: 137–190

    Article  Google Scholar 

  • Manning C E. 2004. The chemistry of subduction-zone fluids. Earth Planet Sci Lett, 223: 1–16

    Article  Google Scholar 

  • Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46: 411–429

    Article  Google Scholar 

  • Martin H, Smithies R H, Rapp R, Moyen J F, Champion D. 2005. An overview of adakite, tonalite-trondhjemiten-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79: 1–24

    Article  Google Scholar 

  • Maruyama S, Okamoto K. 2007. Water transportation from the subducting slab into the mantle transition zone. Gondwana Res, 11: 148–165

    Article  Google Scholar 

  • McCulloch M, Gamble J. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett, 102: 358–374

    Article  Google Scholar 

  • McKenzie D. 1969. Speculations on the consequences and causes of plate motion. Geophys. J Roy Astr Soc, 18: 1–32

    Article  Google Scholar 

  • Meade C, Jeanloz R. 1991. Deep-focus earthquakes and recycling of water into the Earth’s mantle. Science, 252: 68–72

    Article  Google Scholar 

  • Mei S, Kohlstedt D L. 2000a. Influence of water on plastic deformation of olivine aggregate. 1. Diffusion creep regime. J Geophys Res, 105: 21457–21469

    Article  Google Scholar 

  • Mei S, Kohlstedt D L. 2000b. Influence of water on plastic deformation of olivine aggregate. 2. Dislocation creep regime. J Geophys Res, 105: 21471–21481

    Article  Google Scholar 

  • Melekhova E, Schmidt M W, Ulmer P, Pettke to 2007. The composition of liquids coexisting with dense hydrous magnesium silicates at 11–13.5 GPa and the endpoints of the solidi in the MgO-SiO2-H2O system. Geochim Cosmochim Acta, 71: 3348–3360

    Article  Google Scholar 

  • Mibe K, Kanzaki M, Kawamoto T, Matsukage K N, Fei Y, Ono S. 2007. Second critical endpoint in the peridotite-H2O system. J Geophys Res, 112: B03201

    Google Scholar 

  • Mibe K, Kawamoto T, Matsukage K N, Fei Y, Ono S. 2011. Slab melting versus slab dehydration in subduction-zone magmatism. Proceed Nat Acad Sci, 108: 8177–8182

    Article  Google Scholar 

  • Millhollen G l, Irving A J, Wyllie P J. 1974. Melting interval of peridotite with 5.7 percent water to 3. kilobars. J Geol, 82: 575–587

    Article  Google Scholar 

  • Molnar P, Freedman D, Shih J. 1979. Lengths of intermediate and deep seismic zones and temperatures in downgoing slabs of lithosphere. Geophys J Roy Astr Soc, 56: 41–54

    Article  Google Scholar 

  • Molnar P, England P. 1990. Temperatures, heat flux, and frictional stress near major thrust faults. J Geophys Res, 95: 4833–4856

    Article  Google Scholar 

  • Mysen B O, Boettcher A L. 1975. Melting of a hydrous mantle: I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide, and hydrogen. J Petrol, 16: 520–548

    Article  Google Scholar 

  • Nakamura Y, Kushiro I. 1974. Composition of the gas phase in Mg2SiO4-SiO2-H2O at 1. kbar. Carnegie Institute of Washington Yearbook, 73: 255–258

    Google Scholar 

  • Nakamura D. 2003. Stability of phengite and biotite in eclogites and characteristics of biotite-or orthopyroxene-bearing eclogites. Contrib Mineral Petrol, 145: 550–567

    Article  Google Scholar 

  • Nichols G T, Wyllie P J, Stern C R. 1994. Subduction zone melting of pelagic sediments constrained by melting experiments. Nature, 371: 785–788

    Article  Google Scholar 

  • Niida K, Green D H. 1999. Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Mineral Petrol, 135: 18–40

    Article  Google Scholar 

  • Nishi M, Irifune T, Tsuchiya J, Tange Y, Nishihara Y, Fu**o K, Higo Y. 2014. Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nature Geosci, 7: 224–227

    Article  Google Scholar 

  • Ohtani E, Mizobata H, Kudoh Y, Nagase T, Arashi H, Yurimoto H, Miyagi I. 1997. A new hydrous silicate, a water reservoir, in the upper part of the lower mantle. Geophys Res Lett, 24: 1047–1050

  • Ohtani E, Shibata T, Kubo T, Kato to 1995. Stability of hydrous phases in the transition zone and the uppermost part of the lower mantle. Geophys Res Lett, 22: 2553–2556

    Article  Google Scholar 

  • Ohtani E, Amaike Y, Kamada S, Sakamaki T, Hirao N. 2014. Stability of hydrous phase H MgSiO4H2 under lower mantle conditions. Geophys Res Lett, 41: 8283–8287

    Article  Google Scholar 

  • Okamoto K, Maruyama S. 1998. Multi-anvil re-equilibration experiments of a Dabie Shan ultrahigh-pressure eclogite within the diamondstability fields. Island Arc, 7: 52–69

    Article  Google Scholar 

  • Okamoto K, Maruyama S. 1999. The high-pressure synthesis of lawsonite in the MORB+H2O system. Am Mineral, 84: 362–373

    Article  Google Scholar 

  • Okay A I. 1980. Mineralogy, petrology, and phase relations of glaucophane-lawsonite zone blueschists from the Tavşanli Region, Northwest Turkey. Contrib Mineral Petrol, 72: 243–255

    Article  Google Scholar 

  • Ono S. 1998. Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: Implications for water transport in subduction zones. J Geophys Res, 103: 18253–18267

    Article  Google Scholar 

  • Pacalo R E G, Parise J B. 1992. Crystal structure of superhydrous B, a hydrous magnesium silicate synthesized at 1400°C an. 2. GPa. Am Mineral, 77: 681–684

    Google Scholar 

  • Paillat O, Elphick S C, Brown W L. 1992. The solubility of water in NaAlSi3O8 melts: A re-examination of Ab-H2O phase relationships and critical behaviour at high pressures. Contrib Mineral Petrol, 112: 490–500

    Article  Google Scholar 

  • Pawley A R, Wood B J. 1995. The high-pressure stability of talc and 10 Å phase: Potential storage sites for H2O in subduction zones. Am Mineral, 80: 998–1003

    Article  Google Scholar 

  • Pawley A R, Wood B J. 1996. The low-pressure stability of phase A, Mg7Si2O8(OH)6. Contrib Mineral Petrol, 124: 90–97

    Article  Google Scholar 

  • Peacock S M. 1987. Serpentinization and infiltration metasomatism in the Trinity peridotite, Klamath province, northern California: Implications for subduction zones. Contrib Mineral Petrol, 95: 55–70

    Article  Google Scholar 

  • Peacock S M. 1990. Fluid processes in subduction zones. Science, 248: 329–337

    Article  Google Scholar 

  • Peacock S M. 1992. Blueschist-facies metamorphism, shear heating, and P-T-t paths in subduction shear zones. J Geophys Res, 97: 17693–17707

    Article  Google Scholar 

  • Peacock S M. 1993. The importance of blueschist→eclogite dehydration reactions in subducting oceanic crust. Geol Soc Am Bull, 105: 684–694

    Article  Google Scholar 

  • Peacock S M, Rushmer T, Thompson A B. 1994. Partial melting of subducting oceanic crust. Earth Planet Sci Lett, 121: 227–244

    Article  Google Scholar 

  • Peacock S M. 1996. Thermal and petrologic structure of subduction zones. In: Bebout E, Schol D W, Kirby S H, Blatt J P, eds. Subduction: Top to Bottom. Geophys Monograph Ser, 96: 119–133

    Google Scholar 

  • Peacock S M, Wang K. 1999. Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan. Science, 286: 937–939

    Article  Google Scholar 

  • Peacock S M. 2001. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology, 29: 299–302

    Article  Google Scholar 

  • Pearson D G, Brenker F E, Nestola F, McNeill J, Nasdala L, Hutchison M T, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L. 2014. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507: 221–224

    Article  Google Scholar 

  • Penniston-Dorland S C, Kohn M J, Manning C E. 2015. The global range of subduction zone thermal structures from exhumed blueschists and eclogites: Rocks are hotter than models. Earth Planet Sci Lett, 428: 243–254

    Article  Google Scholar 

  • Pirard C, Hermann J. 2015. Focused fluid transfer through the mantle above subduction zones. Geology, 43: 915–918

    Article  Google Scholar 

  • Plank to 2014. The chemical composition of subducting sediments. Treatise Geochem, 4: 607–629

    Article  Google Scholar 

  • Poli S. 1993. The amphibolite-eclogite transformation: An experimental study on basalt. Am J Sci, 293: 1061–1107

    Article  Google Scholar 

  • Poli S, Schmidt M W. 1995. H2O transport and release in subduction zones: Experimental constraints on basaltic and andesitic systems. J Geophys Res, 100: 22299–22314

    Article  Google Scholar 

  • Poli S, Schmidt M W. 2002. Petrology of subducted slabs. Annu Rev Earth Planet Sci, 30: 207–235

    Article  Google Scholar 

  • Poli S, Schmidt M W. 2004. Experimental subsolidus studies on epidote minerals. Rev Mineral Geochem, 56: 171–195

    Article  Google Scholar 

  • Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S. 2007. Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett, 255: 53–69

    Article  Google Scholar 

  • Ringwood A E, Major A. 1966. High-pressure transformations in pyroxenes. Earth Planet Sci Lett, 1: 351–357

    Article  Google Scholar 

  • Ruscitto D M, Wallace P J, Johnson E R, Kent A J R, Bindeman I N. 2010. Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: Implications for magma formation and mantle conditions in a hot arc. Earth Planet Sci Lett, 298: 153–161

    Article  Google Scholar 

  • Rumble D, Liou J G, Jahn B M. 2003. Continental crust subduction and ultrahigh pressure metamorphism. Treatise Geochem, 3: 293–319

    Article  Google Scholar 

  • Rüpke L H, Morgan J P, Hort M, Connolly J A D. 2004. Serpentine and the subduction zone water cycle. Earth Planet Sci Lett, 223: 17–34

    Article  Google Scholar 

  • Scambelluri M, Philippot P. 2001. Deep fluids in subduction zones. Lithos, 55: 213–227

    Article  Google Scholar 

  • Scambelluri M, Pettke T, Rampone E, Godard M, Reusser E. 2014. Petrology and trace element budgets of high-pressure peridotites indicate subduction dehydration of serpentinized mantle (Cima di Gagnone, Central Alps, Switzerland). J Petrol, 55: 459–498

    Article  Google Scholar 

  • Scambelluri M, Pettke T, Cannao E. 2015. Fluid inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps). Earth Planet Sci Lett, 429: 45–59

    Article  Google Scholar 

  • Schellart W P, Rawlinson N. 2010. Convergent plate margin dynamics: New perspectives from structural geology, geophysics and geodynamic modelling. Tectonophysics, 483: 4–19

    Article  Google Scholar 

  • Schmidt M W. 1996. Experimental constraints on recycling of potassium from subducted oceanic crust. Science, 272: 1927–1930

    Article  Google Scholar 

  • Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett, 163: 361–379

    Article  Google Scholar 

  • Schmidt M W, Vielzeuf D, Auzanneau E. 2004. Melting and dissolution of subducting crust at high pressures: The key role of white mica. Earth Planet Sci Lett, 228: 65–84

    Article  Google Scholar 

  • Schmidt M W, Poli S. 2014. Devolatilization during subduction. Treatise Geochem, 4: 669–701

    Article  Google Scholar 

  • Scholz C H. 1990. The Mechanics of Earthquakes and Faulting. Cambridge: Cambridge Unviersity Press. 439

    Google Scholar 

  • Schwartz S, Guillot S, Reynard B, Lafay R, Debret B, Nicollet C, Lanari P, Auzende A L. 2013. Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos, 178: 197–210

    Article  Google Scholar 

  • Sekine T, Wyllie P J. 1982. Phase relationships in the system KAl-SiO4-Mg2SiO4-SiO2-H2O as a model for hybridization between hydrous siliceous melts and peridotite. Contrib Mineral Petrol, 79: 368–374

    Article  Google Scholar 

  • Sen C, Dunn to 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: Implications for the origin of adakites. Contrib Mineral Petrol, 117: 394–409

    Article  Google Scholar 

  • Seno T, Yamanaka Y. 1996. Double seismic zones, compressional deep trench-outer rise events, and superplumes. In: Bebout E, Schol D W, Kirby S H, Blatt J P, eds. Subduction: Top to Bottom. Geophys Monograph Ser, 96: 347–355

    Google Scholar 

  • Shen A H, Keppler H. 1997. Direct observation of complete miscibility in the albite-H2O system. Nature, 385: 710–712

    Article  Google Scholar 

  • Shieh S R, Mao H K, Hemley R J, Ming L C. 1998. Decomposition of phase D in the lower mantle and the fate of dense hydrous silicates in subducting slabs. Earth Planet Sci Lett, 159: 13–23

    Article  Google Scholar 

  • Sleep N H, Windley B F. 1982. Archean plate tectonics: Constraints and inferences. J Geol, 90: 363–379

    Article  Google Scholar 

  • Smyth J R, Kawamoto to 1997. Wadsleyite II: A new high pressure hydrous phase in the peridotite-H2O system. Earth Planet Sci Lett, 146: E9–E16

  • Stalder R, Ulmer P, Thompson A B, Günther D. 2000. Experimental approach to constrain second critical end points in fluid/silicate systems: Near-solidus fluids and melts in the system albite-H2O. Am Mineral, 85: 68–77

    Article  Google Scholar 

  • Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust. Lithos, 170-171: 208–223

    Article  Google Scholar 

  • Stalder R, Ulmer P, Thompson A B, Günther D. 2001. High pressure fluids in the system MgO-SiO2-H2O under upper mantle conditions. Contrib Mineral Petrol, 140: 607–618

    Article  Google Scholar 

  • Stein S. 1995. Deep earthquakes: A fault too big? Science, 268: 49–50

    Article  Google Scholar 

  • Stern R J. 2002. Subduction zones. Rev Geophys, 40. 1012. doi: 10.1029/2001RG000108

    Article  Google Scholar 

  • Stuwe K. 2007. Geodynamics of the Lithosphere. 2nd ed. Berlin Heidelberg: Springer-Verlag. 497

  • Syracuse E M, van Keken P E, Abers G A. 2010. The global range of subduction zone thermal models. Phys Earth Planet Inter, 183: 73–90

    Article  Google Scholar 

  • Tatsumi Y, Sakuyama M, Fukuyama H, Kushiro I. 1983. Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones (Japan arc). J Geophys Res, 88: 5815–5825

    Article  Google Scholar 

  • Tatsumi Y, Hamilton D L, Nesbitt R W. 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks. J Volcanol Geotherm Res, 29: 293–309

    Article  Google Scholar 

  • Tatsumi Y, Eggins S. 1995. Subduction Zone Magmatism. Boston: Blackwell Science. 211

    Google Scholar 

  • Thompson A B. 1992. Water in the Earth’s upper mantle. Nature, 358: 295–302

    Article  Google Scholar 

  • Thomsen T B, Schmidt M W. 2008a. Melting of carbonated pelites at 2.5-5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth Planet Sci Lett, 267: 17–31

    Article  Google Scholar 

  • Thomsen T B, Schmidt M W. 2008b. The biotite to phengite reaction and mica-dominated melting in fluid + carbonate-saturated pelites at high pressures. J Petrol, 49: 1889–1914

    Article  Google Scholar 

  • Thurston S P. 1985. Structure, petrology, and metamorphic history of the Nome Group blueschist terrane, Salmon Lake area, Seward Peninsula, Alaska. Geol Soc Am Bull, 96: 600–617

    Article  Google Scholar 

  • Tichelaar B W, Ruff L J. 1993. Depth of seismic coupling along subduction zones. J Geophys Res, 98: 2017–2037

    Article  Google Scholar 

  • Till C B, Grove T L, Withers A C. 2012. The beginnings of hydrous mantle wedge melting. Contrib Mineral Petrol, 163: 669–688

    Article  Google Scholar 

  • Toksöz M N, Minear J W, Julian B R. 1971. Temperature field and geophysical effects of a downgoing slab. J Geophys Res, 76: 1113–1138

    Article  Google Scholar 

  • Tonegawa T, Hirahara K, Shibutani T, Iwamori H, Kanamori H, Shiomi K. 2008. Water flow to the mantle transition zone inferred from a receiver function image of the Pacific slab. Earth Planet Sci Lett, 274: 346–354

    Article  Google Scholar 

  • Tsujimori T, Sisson V B, Liou J G, Harlow G E, Sorensen S S. 2006. Very-low-temperature record of the subduction process: A review of worldwide lawsonite eclogites. Lithos, 92: 609–624

    Article  Google Scholar 

  • Tsuno K, Dasgupta R. 2011. Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5–3.0 GPa and deep cycling of sedimentary carbon. Contrib Mineral Petrol, 161: 743–763

    Article  Google Scholar 

  • Turcotte D L, Schubert G. 1973. Frictional heating of the descending lithosphere. J Geophys Res, 78: 5876–5886

    Article  Google Scholar 

  • Turcotte D L, Schubert G. 2014. Geodynamics. 3rd ed. Cambridge: Cambridge University Press. 626

    Google Scholar 

  • Ulmer P, Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268: 858–861

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V. 1999. Phase relations of hydrous mantle subducting to 30. km. Geochem Soc Spec Publ, 6: 259–281

    Google Scholar 

  • Uyeda S, Kanamori H. 1979. Back-arc opening and the mode of subduction. J Geophys Res, 84: 1049–1061

    Article  Google Scholar 

  • van den Beukel J, Wortel R. 1988. Thermo-mechanical modelling of arc-trench regions. Tectonophys, 154: 177–193

    Article  Google Scholar 

  • van Hunen J, van den Berg A P, Vlaar N J. 2000. A thermo-mechanical model of horizontal subduction below an overriding plate. Earth Planet Sci Lett, 182: 157–169

    Article  Google Scholar 

  • van Hunen J, van den Berg A P, Vlaar N J. 2002. The impact of the South-American plate motion and the Nazca Ridge subduction on the flat subduction below South Peru. Geophys Res. Lett, 29. 1690. doi: 10.1029/2001GL014004

    Google Scholar 

  • van Hunen J, van den Berg A P, Vlaar N J. 2004. Various mechanisms to induce shallow flat subduction: A numerical parameter study. Phys Earth Planet Inter, 146: 179–194

    Article  Google Scholar 

  • van Keken P E, Hacker B R, Syracuse E M, Abers G A. 2011. Subduction factory. 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res, 116: B01401

  • Vielzeuf D, Montel J M. 1994. Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships. Contrib Mineral Petrol, 117: 375–393

    Article  Google Scholar 

  • Vielzeuf D, Schmidt M W. 2001. Melting relations in hydrous systems revisited: Application to metapelites, metagreywackes and metabasalts. Contrib Mineral Petrol, 141: 251–267

    Article  Google Scholar 

  • Wada I, Wang K. 2009. Common depth of slab-mantle decoupling: Reconciling diversity and uniformity of subduction zones. Geochem Geophy Geosyst, 10: Q10009

  • Wada I, Behn M D, Shaw A M. 2012. Effects of heterogeneous hydration in the incoming plate, slab rehydration, and mantle wedge hydration on slab-derived H2O flux in subduction zones. Earth Planet Sci Lett, 353-354: 60–71

    Article  Google Scholar 

  • Wei C J, Wang W, Clarke G, Zhang L F, Song S G. 2009. Metamorphism of high/ultrahigh-pressure politic-felsic schist in the South Tianshan Orogen, NW China: Phase equilibria and P-T path. J Petrol, 50: 1973–1991.

    Article  Google Scholar 

  • Wei C J, Li Y J, Yu Y, Zhang J S. 2010. Phase equilibria and metamorphic evolution of glaucophane-bearing UHP eclogites from the western Dabieshan terrane, Central China. J Metamorph Geol, 28: 647–666

    Article  Google Scholar 

  • Wei C J, Clarke G L. 2011. Calculated phase equilibria for MORB compositions: A reappraisal of metamorphic evolution of lawsonite eclogite. J Metamorph Geol, 29. 16. 939–952

    Article  Google Scholar 

  • Wei C J, Qian J H, Tian Z L. 2013. Metamorphic evolution of medium-temperature ultra-high pressure (MT-UHP) eclogites from the South Dabie Orogen, Central China: An insight from phase equilibria modeling. J Metamorph Geol, 31: 755–774

    Article  Google Scholar 

  • Wei C J, Cui Y, Tian Z L. 2015. Metamorphic evolution of LT-UHP eclogites from the South Dabie Orogen, Central China: An insight from phase equilibria modeling. J Asian Earth Sci, 111: 966–980

    Article  Google Scholar 

  • Wyllie P J, Sekine to 1982. The formation of mantle phlogopite in subduction zone hybridization. Contrib Mineral Petrol, 79: 375–380

    Article  Google Scholar 

  • Wyllie P J. 1988. Magma genesis, plate tectonics, and chemical differentiation of the Earth. Rev Geophys, 26: 370–404

    Article  Google Scholar 

  • Yamamoto K, Akimoto S. 1977. The system MgO-SiO2-H2O at high pressures and temperatures-Stability field for hydroxyl-chondrodite, hydroxyl-clinohumite and 1. Å-phase. Am J Sci, 277: 288–312

    Article  Google Scholar 

  • Yang H, Prewitt C T, Frost D J. 1997. Crystal structure of the dense hydrous magnesium silicate, phase D. Am Mineral, 82: 651–654

    Article  Google Scholar 

  • Yaxley G M, Brey G P. 2004. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contrib Mineral Petrol, 146: 606–619

    Article  Google Scholar 

  • Yogodzinski G M, Lees J M, Churikova T G, Dorendorf F, Woerner G, Volynets O N. 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409: 500–504

    Article  Google Scholar 

  • Zack T, John to 2007. An evaluation of reactive fluid flow and trace element mobility in subducting slabs. Chem Geol, 237: 199–216

    Article  Google Scholar 

  • Zhang J F, Green H W, Bozhilov K, ** Z M. 2004. Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust. Nature, 428: 633–636

    Article  Google Scholar 

  • Zheng Y F, Fu B, Gong B, Li L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth Sci Rev, 62: 105–161

    Article  Google Scholar 

  • Zheng Y F. 2009. Fluid regime in continental subduction zones: Petrological insights from ultrahigh-pressure metamorphic rocks. J Geol Soc, 166: 763–782

    Article  Google Scholar 

  • Zheng Y F, **a Q X, Chen R, Gao X Y. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Sci Rev, 107: 342–374

    Article  Google Scholar 

  • Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48

    Article  Google Scholar 

  • Zheng Y F, Zhao Z F, Chen Y X. 2013. Continental subduction channel processes: Plate interface interaction during continental collision. Chin Sci Bull, 58: 4371–4377

    Article  Google Scholar 

  • Zheng Y F, Hermann J. 2014. Geochemistry of continental subduction-zone fluids. Earth Planets Space, 66. 93. doi: 10.1186/1880-5981-66–93

    Article  Google Scholar 

  • Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Develo** plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 58: 1045–1069

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongFei Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Chen, R., Xu, Z. et al. The transport of water in subduction zones. Sci. China Earth Sci. 59, 651–682 (2016). https://doi.org/10.1007/s11430-015-5258-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5258-4

Keywords

Navigation