Log in

Sand flux and wind profiles in the saltation layer above a rounded dune top

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The near-bed airflow and the movement of sand dune sediments by wind are fundamental dune geomorphological processes. This research measured the wind profiles and sand mass flux on the rounded top of a transverse dune at the southern edge of the Tengger Desert to examine how to best predict the vertical profile of sand flux. This work also tested the accuracy of previously developed models in predicting the apparent roughness length during saltation. Results show that mass flux vertical distribution over the dune top is underestimated by an exponential function, overestimated by a power function, but closely matches the predictions made using the LgstcDoseRsp function. Given suitable values of α, β and γ according to the grain size composition, Sørensen equation with the peaked shape of the mass transport curve will well predict the dimensionless mass flux qg/ρu*3 against dimensionless shear velocity u*/u* t . The modified Charnock model works best of the previously published models tested, with an R 2 of 0.783 in predicting the enhanced roughness over the moving sand surface, as opposed to an R 2 of 0.758 for the Owen model and an R 2 of 0.547 for the Raupach model. For the rounded dune top in this study, C m =0.446±0.016.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson R S, Haff P K. 1988. Simulation of eolian saltation. Science, 241: 820–823

    Article  Google Scholar 

  • Anderson R S, Haff P K. 1991. Wind modification and bed response during saltation of sand in air. Acta Mech, (Supp. 1): 21–51

    Google Scholar 

  • Andeson R S, Hallet B. 1986. Sediment transport by wind: Toward a general model. Geol Soc Am Bull, 97: 523–535

    Article  Google Scholar 

  • Andreotti B. 2004. A two-species model of aeolian sand transport. J Fluid Mech, 510: 47–70

    Article  Google Scholar 

  • Baas A C W, Sherman D J. 2005. Formation and behavior of aeolian streamers. J Geophys Res, 110: F03011, doi: 10.1029/2004JF000270

    Google Scholar 

  • Bagnold R A. 1936. The movement of desert sand. Proc R Soc A, 157: 594–620

    Article  Google Scholar 

  • Bagnold R A. 1941. The Physics of Blown Sand and Desert Dunes. London: Methuen

    Google Scholar 

  • Bagnold R A. 1937. The transport of sand by wind. Geograph J, 89: 409–438

    Article  Google Scholar 

  • Bauer B O, Houser C A, Nickling W G. 2004. Analysis of velocity profile measurements from wind-tunnel experiments with saltation. Geomorphology, 59: 81–98

    Article  Google Scholar 

  • Butterfield G R. 1993. Sand transport response to fluctuating wind velocity. In: Clifford N J, French J R, Hardisty J, eds. Turbulence: Perspectives on Flow and Sediment Transport. New York: John Wiley. 305–335

    Google Scholar 

  • Charnock H. 1995. Wind stress on a water surface. Quart J Roy Meteor Soc, 81: 639–640

    Article  Google Scholar 

  • Dong Z B, Gao S Y, Fryrear D W. 2001. Drag coefficients, roughness length and zero-plane displacement height as disturbed by artificial standing vegetation. J Arid Environ, 49: 485–505

    Article  Google Scholar 

  • Dong Z B, Liu X P, Wang H T, et al. 2003. The flux profile of a blowing sand cloud: A wind tunnel investigation. Geomorphology, 49: 219–230

    Article  Google Scholar 

  • Dong Z B, Liu X P, Wang H T. 2003. The aerodynamic roughness with a blowing sand boundary layer (BSBL): A redefinition of the Owen effect. Geophys Res Lett, 30: 1047–1050

    Article  Google Scholar 

  • Dong Z B, Wang H T, Liu X P, et al. 2004. The blown sand flux over a sandy surface: A wind tunnel investigation on the fetch effect. Geomorphology, 57: 117–127

    Article  Google Scholar 

  • Farrell E J, Sherman D J, Ellis J T, et al. 2012. Vertical distribution of grain size for wind blown sand. Aeolian Res, 7: 51–61

    Article  Google Scholar 

  • Farrell E J. 1999. An investigation of surface-wind systems for aeolian saltation: Field and laboratory experiments. M. S. Thesis. Department of Geography, University of S. California, Los Angeles

    Google Scholar 

  • Fearnehough W, Fullen M A, Mitchell D J, et al. 1998. Aeolian deposition and its effect on soil and vegetation changes on stabilized desert dunes in northern China. Geomorphology, 23: 171–182

    Article  Google Scholar 

  • Gillette D A, Herbert G, Stockton P H, et al. 1996. Causes of the fetch effect in wind erosion. Earth Surf Process Landf, 21: 641–659

    Article  Google Scholar 

  • Greeley R, Blumberg D G, Williams S H. 1996. Field measurements of the flux and speed of wind-blown sand. Sedimentology, 43: 41–52

    Article  Google Scholar 

  • Has, Dong G R, Wang G Y. 1999. Morphodynamic study of reticulate dunes at southeastern fringe of Tengger Desert. Sci China Ser D-Earth Sci, 42: 207–215

    Google Scholar 

  • Hopwood J M, Scott W D. 1997. A mathematical model of saltation. Acta Mech, 124: 199–211

    Article  Google Scholar 

  • Hsu S. 1971. Wind stress criteria in eolian sand transport. J Geophys Res, 76: 8684–8686

    Article  Google Scholar 

  • Iversen J D, Rasmussen K R. 1999. The effect of wind speed and bed slope on sand transport. Sedimentology, 46: 723–731

    Article  Google Scholar 

  • Ji S B, Gerber A G, Sousa A C M. 2004. A convection-diffusion CFD model for aeolian saltation. Int J Numer Methods Fluids, 45: 797–817

    Article  Google Scholar 

  • Kadib A A. 1965. A function for sand movement by wind. University of California Hydraulics Engineering Laboratory Report HEL 2-8. UCLA-Berkeley, Berkeley, CA

    Google Scholar 

  • Kawamura R. 1951. Study of sand movement by wind. The Reports of the Institute of Science and Technology, vol 5. University of Tokyo, Japan. 95–112

    Google Scholar 

  • Kind R J. 1976. A critical examination of the requirements for model simulation of wind-induced erosion-deposition phenomena such as snow drifting. Atmos Environ, 10: 219–227

    Article  Google Scholar 

  • Kok J F, Lacks D J. 2009. Electrification of granular system of identical insulators. Phys Rev E, 79: 051304

    Article  Google Scholar 

  • Kok J F, Renno N O. 2009. A comprehensive numerical model of steady state saltation (COMSALT). J Geophys Res, 114: D17204, doi: 10.1029/2009JD011702

    Article  Google Scholar 

  • Lettau K, Lettau H H. 1978. Experimental and micro-meteorological field studies of dune migration. In: Lettau K, Lettau H H, eds. Exploring the World’s Driest Climate. IES Report 101, Institute of Environmental Studies, University of Wisconsin. Madison. 110–147

    Google Scholar 

  • Li B, Sherman D J, Farrell E J, et al. 2010. Variability of the apparent von Kármán parameter during aeolian saltation. Geophys Res Lett, 37: L15404, doi: 10.1029/2010GL044068

    Google Scholar 

  • Li J. 1988. Wind regime and shifting sand movement in Shapotou area. J Desert Res, 8: 41–52

    Google Scholar 

  • Maegley W J. 1976. Saltation and Martian sandstorms. Rev Geophys, 14: 135–142

    Article  Google Scholar 

  • McEwan I K, Willetts B B. 1991. Numerical model of the saltation cloud. Acta Mech, (Supp. 1): 53–66

    Google Scholar 

  • Namikas S L. 2003. Field measurement and numerical modeling of aeolian mass flux distributions on a sandy beach. Sedimentology, 50: 303–326

    Article  Google Scholar 

  • Neuman C M, Maljaars M. 1997. Wind tunnel measurement of boundary-layer response to sediment transport. Bound-Layer Meteor, 84: 67–83

    Article  Google Scholar 

  • Ni J R, Li Z S, Mendoza C. 2002. Vertical profiles of aeolian sand mass flux. Geomorphology, 49: 205–218

    Article  Google Scholar 

  • Nikuradse J. 1933. Laws of flow in rough pipes (1950 translation). Technical Memoranda, 1292. Washington, D. C: National Advisory Committee on Aeronauts

    Google Scholar 

  • Owen P R. 1964. Saltation of uniform grains in air. J Fluid Mech, 20: 225–242

    Article  Google Scholar 

  • Rasmussen K R, Iversen J D, Rautaheimo P. 1996. Saltation and wind-flow interaction in a variable slope wind tunnel. Geomorphology, 17: 19–28

    Article  Google Scholar 

  • Rasmussen K R, Mikkelsen H E. 1998. On the efficiency of vertical array aeolian field traps. Sedimentology, 45: 789–799

    Article  Google Scholar 

  • Rasmussen K R, Sørensen M, Willetts B B. 1985. Measurement of saltation and wind strength on beaches. In: Barndorff-Nielsen O E, Møller J T, Rasmussen K R, et al., eds. Proceedings of International Workshop on the Physics of Blown Sand. Mem. 8(2), Dept. of Theor. Stat., Aarhus Univ., Aarhus, Denmark. 301–326

    Google Scholar 

  • Raupach M R. 1991. Saltation layers, vegetation canopies and roughness lengths. Acta Mech, (Supp. 1): 83–96

    Google Scholar 

  • Sauermann G, Kroy K, Herrmann H J. 2001. A continuum saltation model for sand dunes. Phys Rev E, 64: 31305–31316

    Article  Google Scholar 

  • Shao Y. 2005. A similarity theory for saltation and application to aeolian mass flux. Bound-Layer Meteor, 115: 319–338

    Article  Google Scholar 

  • Shapotou Scientific Experiment Station. 1991. Principles and Measures of Sand Fixation in the Shapotou Area of the Baotou-Lanzhou Railway. Yinchuan: Ningxia People’s Publishing House

    Google Scholar 

  • Sherman D J, Farrell E J. 2008. Aerodynamic roughness lengths over movable beds: Comparison of wind tunnel and field data. J Geophys Res, 113: F02S08, doi: 10.1029/2007JF000784

    Google Scholar 

  • Sherman D J, Li B. 2012. Predicting aeolian sand transport rates: A reevaluation of models. Aeolian Res, 3: 371–378

    Article  Google Scholar 

  • Sherman D J. 1992. An equilibrium relationship for shear velocity and roughness length in aeolian saltation. Geomorphology, 5: 419–431

    Article  Google Scholar 

  • Shi F, Huang N. 2010. Computational simulations of blown sand fluxes over the surface of complex microtopography. Environ Model Software, 25: 362–367

    Article  Google Scholar 

  • Sørensen M, McEwan I K. 1996. On the effect of mid-air collisions on aeolian saltation. Sedimentology, 43: 65–76

    Article  Google Scholar 

  • Sørensen M. 1991. An analytical model of windblown sand transport. In: Barndorff-Nielsen O E, Willetts B B, eds. Aeolian Grain Transport. Acta Mech, (Supp. 1): 67–81

    Chapter  Google Scholar 

  • Sørensen M. 2004. On the rate of aeolian sand transport. Geomorphology, 59: 53–62

    Article  Google Scholar 

  • Sterk G, Parigiani J, Cittadini E, et al. 2012. Aeolian sediment mass fluxes on a sandy soil in Central Patagonia. Catena, 95: 112–123

    Article  Google Scholar 

  • Watts I E M. 1969. Climates of China and Korea. In: Arakawa H, ed. Climates of Northern and Eastern Asia. World Survey of Climatology, vol. 8. Amsterdam: Elsevier. 1–75

    Google Scholar 

  • White B R, Mounla H. 1991. An experimental study of Froude number effect on wind-tunnel saltation. Acta Mech, (Supp. 1): 145–157

    Google Scholar 

  • White B R. 1979. Soil transport by winds on Mars. J Geophys Res, 84: 4643–4651

    Article  Google Scholar 

  • Williams G. 1964. Some aspects of the eolian saltation load. Sedimentology, 3: 257–287

    Article  Google Scholar 

  • Wu J J, Luo S H, He L H. 2012. The characteristics of streamwise mass flux of windblown sand movement. Geomorphology, 139–140: 188–194

    Article  Google Scholar 

  • Wu Z. 1987. Aeolian Geomorphology. Bei**g: Science Press

    Google Scholar 

  • Zhang C L, Zou X Y, Pan X H, et al. 2007. Near-surface airflow field and aerodynamic characteristics of the railway-protection system in the Shapotou region and their significance. J Arid Environ, 71: 169–187

    Article  Google Scholar 

  • Zhao X. 1988. Problems of revegetation on sand dunes in Shapotou area. In: Studies of Dune Control in Shapotou Area. Shapotou Scientific Experimental Station, Lanzhou Institute of Desert Research, Academia Sinica. Yinchuan: Ningxia People’s Publishing House. 27–58

    Google Scholar 

  • Zheng X J, He H L, Wu J J. 2004. Vertical profile of mass flux for windblown sand movement at steady state. J Geophys Res, 109: B01106, doi: 10.1029/2003JB002656

    Google Scholar 

  • Zingg A W. 1953. Wind tunnel studies of the movement of sedimentary material. Proceedings of 5th Hydraulic Conference, Institute of Hydraulics, Iowa City. 111–135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Zhou, N. & Zhang, J. Sand flux and wind profiles in the saltation layer above a rounded dune top. Sci. China Earth Sci. 57, 523–533 (2014). https://doi.org/10.1007/s11430-013-4672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-013-4672-8

Keywords

Navigation