Log in

RES transformation for biosynthesis and detoxification

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The reactive electrophilic species (RES), typically the molecules bearing α,β-unsaturated carbonyl group, are widespread in living organisms and notoriously known for their damaging effects. Many of the mycotoxins released from phytopathogenic fungi are RES and their contamination to cereals threatens food safety worldwide. However, due to their high reactivity, RES are also used by host organisms to synthesize specific metabolites. The evolutionary conserved glyoxalase (GLX) system scavenges the cytotoxic α-oxoaldehydes that bear RES groups, which cause host disorders and diseases. In cotton, a specialized enzyme derived from glyoxalase I (GLXI) through gene duplications and named as specialized GLXI (SPG), acts as a distinct type of aromatase in the gossypol pathway to transform the RES intermediates into the phenolic products. In this review, we briefly introduce the research progress in understanding the RES, especially the RES-type mycotoxins, the GLX system and SPG, and discuss their application potential in detoxification and synthetic biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldini, G., Vistoli, G., Stefek, M., Chondrogianni, N., Grune, T., Sereikaite, J., Sadowska- Bartosz, I., and Bartosz, G. (2013). Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Rad Res 47, 93–137.

    CAS  Google Scholar 

  • Alvarez Viveros, M.F., Inostroza-Blancheteau, C., Timmermann, T., González, M., and Arce-Johnson, P. (2013). Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress. Mol Biol Rep 40, 3281–3290.

    CAS  PubMed  Google Scholar 

  • Arunachalam, C., and Doohan, F.M. (2013). Trichothecene toxicity in eukaryotes: cellular and molecular mechanisms in plants and animals. Toxicol Lett 217, 149–158.

    CAS  PubMed  Google Scholar 

  • Ben Taheur, F., Kouidhi, B., Al Qurashi, Y.M.A., Ben Salah-Abbès, J., and Chaieb, K. (2019). Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 160, 12–22.

    CAS  PubMed  Google Scholar 

  • Cameron, A.D., Ridderström, M., Olin, B., Kavarana, M.J., Creighton, D. J., and Mannervik, B. (1999). Reaction mechanism of glyoxalase I explored by an X-ray crystallographic analysis of the human enzyme in complex with a transition state analogue. Biochemistry 38, 13480–13490.

    CAS  PubMed  Google Scholar 

  • Dave, A., and Graham, I.A. (2012). Oxylipin signaling: A distinct role for the jasmonic acid precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA). Front Plant Sci 3, 42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Lorenzo, V., Prather, K.L., Chen, G.Q., O'Day, E., von Kameke, C., Oyarzún, D.A., Hosta- Rigau, L., Alsafar, H., Cao, C., Ji, W., et al. (2018). The power of synthetic biology for bioproduction, remediation and pollution control. EMBO Rep 19, e45658.

    PubMed  PubMed Central  Google Scholar 

  • Dick, R.A., Kwak, M.K., Sutter, T.R., and Kensler, T.W. (2001). Antioxidative function and substrate specificity of NAD(P)H- dependent alkenal/one oxidoreductases. A new role for leukotriene B4 12-hydroxydehydrogenase/15-oxoprostaglandin 13-reductase. J Biol Chem 276, 40803–40810.

    CAS  PubMed  Google Scholar 

  • Farmer, E.E., and Davoine, C. (2007). Reactive electrophile species. Curr Opin Plant Biol 10, 380–386.

    CAS  PubMed  Google Scholar 

  • Hovatta, I., Tennant, R.S., Helton, R., Marr, R.A., Singer, O., Redwine, J. M., Ellison, J.A., Schadt, E.E., Verma, I.M., Lockhart, D.J., et al. (2005). Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature 438, 662–666.

    CAS  PubMed  Google Scholar 

  • Huang, J.Q., Fang, X., Tian, X., Chen, P., Lin, J.L., Guo, X.X., Li, J.X., Fan, Z., Song, W.M., Chen, F.Y., et al. (2020). Aromatization of natural products by a specialized detoxification enzyme. Nat Chem Biol 16, 250–256.

    CAS  PubMed  Google Scholar 

  • Hussein, H.S., and Brasel, J.M. (2001). Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167, 101–134.

    CAS  PubMed  Google Scholar 

  • Kang, Y., Feng, H., Zhang, J., Chen, S., Valverde, B.E., and Qiang, S. (2017). TeA is a key virulence factor for Alternaria alternata (Fr.) Keissler infection of its host. Plant Physiol Biochem 115, 73–82.

    CAS  PubMed  Google Scholar 

  • Kolb, N.S., Hunsaker, L.A., and Vander J.D.L. (1994). Aldose reductasecatalyzed reduction of acrolein: Implications in cyclophosphamide toxicity. Mol Pharmacol 45, 797–801.

    CAS  PubMed  Google Scholar 

  • Kuhla, B., Boeck, K., Lüth, H.J., Schmidt, A., Weigle, B., Schmitz, M., Ogunlade, V., Münch, G., and Arendt, T. (2006). Age-dependent changes of glyoxalase I expression in human brain. Neurobiol Aging 27, 815–822.

    CAS  PubMed  Google Scholar 

  • Lee, C., and Park, C. (2017). Bacterial responses to glyoxal and methylglyoxal: Reactive electrophilic species. Int J Mol Sci 18, 169.

    PubMed Central  Google Scholar 

  • Li, P., Su, R., Yin, R., Lai, D., Wang, M., Liu, Y., and Zhou, L. (2020). Detoxification of mycotoxins through biotransformation. Toxins 12, 121.

    CAS  PubMed Central  Google Scholar 

  • Li, W., Lybrand, D.B., Zhou, F., Last, R.L., and Pichersky, E. (2019). Pyrethrin biosynthesis: The cytochrome P450 oxidoreductase CYP82Q3 converts jasmolone to pyrethrolone. Plant Physiol 181, 934–944.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, D., Callari, R., Hamberger, B., Wubshet, S.G., Nielsen, M.T., Andersen-Ranberg, J., Hallström, B.M., Cozzi, F., Heider, H., Lindberg Møller, B., et al. (2016). Oxidation and cyclization of casbene in the biosynthesis of Euphorbia factors from mature seeds of Euphorbia lathyris L.. Proc Natl Acad Sci USA 113, E5082–E5089.

    CAS  PubMed  Google Scholar 

  • Lv, N., Hao, S., Luo, C., Abukiwan, A., Hao, Y., Gai, F., Huang, W., Huang, L., **ao, X., Eichmüller, S.B., et al. (2018). miR-137 inhibits melanoma cell proliferation through downregulation of GLO1. Sci China Life Sci 61, 541–549.

    CAS  PubMed  Google Scholar 

  • Mano, J., Belles-Boix, E., Babiychuk, E., Inzé, D., Torii, Y., Hiraoka, E., Takimoto, K., Slooten, L., Asada, K., and Kushnir, S. (2005). Protection against photooxidative injury of tobacco leaves by 2-alkenal reductase. Detoxication of lipid peroxide-derived reactive carbonyls. Plant Physiol 139, 1773–1783.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick, S.P., Stanley, A.M., Stover, N.A., and Alexander, N.J. (2011). Trichothecenes: from simple to complex mycotoxins. Toxins 3, 802–814.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, Z., Cheng, H., Sun, G., Pan, Z., Wang, X., Geng, X., He, S., and Du, X. (2020). Expression patterns and functional divergence of homologous genes accompanied by polyploidization in cotton (Gossypium hirsutum L.). Sci China Life Sci https://doi.org/10.1007/s11427-019-1618-7.

    Google Scholar 

  • Rabbani, N., and Thornalley, P.J. (2014). The critical role of methylglyoxal and glyoxalase 1 in diabetic nephropathy. Diabetes 63, 50–52.

    CAS  PubMed  Google Scholar 

  • Racker, E. (1951). The mechanism of action of glyoxalase. J Biol Chem 190, 685–696.

    CAS  PubMed  Google Scholar 

  • Richard, J.L. (2007). Some major mycotoxins and their mycotoxicoses—An overview. Int J Food Microbiol 119, 3–10.

    CAS  PubMed  Google Scholar 

  • Riechers, D.E., Kreuz, K., and Zhang, Q. (2010). Detoxification without intoxication: herbicide safeners activate plant defense gene expression. Plant Physiol 153, 3–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sankaranarayanan, S., Jamshed, M., Kumar, A., Skori, L., Scandola, S., Wang, T., Spiegel, D., and Samuel, M.A. (2017). Glyoxalase goes green: The expanding roles of glyoxalase in plants. Int J Mol Sci 18, 898.

    PubMed Central  Google Scholar 

  • Sankaranarayanan, S., Jamshed, M., and Samuel, M.A. (2015). Degradation of glyoxalase I in Brassica napus stigma leads to self-incompatibility response. Nat Plants 1, 15185.

    CAS  PubMed  Google Scholar 

  • Scheckhuber, C.Q., Mack, S.J., Strobel, I., Ricciardi, F., Gispert, S., and Osiewacz, H.D. (2010). Modulation of the glyoxalase system in the aging model Podospora anserina: effects on growth and lifespan. Aging 2, 969–980.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shang, Y., Ma, Y., Zhou, Y., Zhang, H., Duan, L., Chen, H., Zeng, J., Zhou, Q., Wang, S., Gu, W., et al. (2014). Biosynthesis, regulation, and domestication of bitterness in cucumber. Science 346, 1084–1088.

    CAS  PubMed  Google Scholar 

  • Simpson, P.J., Tantitadapitak, C., Reed, A.M., Mather, O.C., Bunce, C.M., White, S.A., and Ride, J.P. (2009). Characterization of two novel aldoketo reductases from Arabidopsis: Expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress. J Mol Biol 392, 465–480.

    CAS  PubMed  Google Scholar 

  • Streit, E., Naehrer, K., Rodrigues, I., and Schatzmayr, G. (2013). Mycotoxin occurrence in feed and feed raw materials worldwide: Long-term analysis with special focus on Europe and Asia. J Sci Food Agric 93, 2892–2899.

    CAS  PubMed  Google Scholar 

  • Taki, N., Sasaki-Sekimoto, Y., Obayashi, T., Kikuta, A., Kobayashi, K., Ainai, T., Yagi, K., Sakurai, N., Suzuki, H., Masuda, T., et al. (2005). 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol 139, 1268–1283.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thornalley, P.J. (1990). The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J 269, 1–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thornalley, P.J. (2003). Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31, 1343–1348.

    CAS  PubMed  Google Scholar 

  • Tian, X., Fang, X., Huang, J.Q., Wang, L.J., Mao, Y.B., and Chen, X.Y. (2019). A gossypol biosynthetic intermediate disturbs plant defence response. Phil Trans R Soc B 374, 20180319.

    CAS  PubMed  Google Scholar 

  • Tian, X., Ruan, J., Huang, J., Fang, X., Mao, Y., Wang, L., Chen, X., and Yang, C. (2016a). Gossypol: phytoalexin of cotton. Sci China Life Sci 59, 122–129.

    CAS  PubMed  Google Scholar 

  • Tian, X., Ruan, J.X., Huang, J.Q., Yang, C.Q., Fang, X., Chen, Z.W., Hong, H., Wang, L.J., Mao, Y.B., Lu, S., et al. (2018). Characterization of gossypol biosynthetic pathway. Proc Natl Acad Sci USA 115, E5410–E5418.

    CAS  PubMed  Google Scholar 

  • Tian, Y., Tan, Y., Liu, N., Liao, Y., Sun, C., Wang, S., and Wu, A. (2016b). Functional agents to biologically control deoxynivalenol contamination in cereal grains. Front Microbiol 7, 395.

    PubMed  PubMed Central  Google Scholar 

  • Wang, K., Huang, G., and Zhu, Y. (2016). Transposable elements play an important role during cotton genome evolution and fiber cell development. Sci China Life Sci 59, 112–121.

    CAS  PubMed  Google Scholar 

  • Weng, J.K., Philippe, R.N., and Noel, J.P. (2012). The rise of chemodiversity in plants. Science 336, 1667–1670.

    CAS  PubMed  Google Scholar 

  • **a, Y., Huang, G., and Zhu, Y. (2019). Sustainable plant disease control: biotic information flow and behavior manipulation. Sci China Life Sci 62, 1710–1713.

    CAS  PubMed  Google Scholar 

  • Yamauchi, Y., Hasegawa, A., Taninaka, A., Mizutani, M., and Sugimoto, Y. (2011). NADPH-dependent reductases involved in the detoxification of reactive carbonyls in plants. J Biol Chem 286, 6999–7009.

    CAS  PubMed  Google Scholar 

  • Zhou, Y., Ma, Y., Zeng, J., Duan, L., Xue, X., Wang, H., Lin, T., Liu, Z., Zeng, K., Zhong, Y., et al. (2016). Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. Nat Plants 2, 16183.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (31690092, 31788103 to X. Chen and 31872666 to X. Fang), the Ministry of Agriculture of China (2016ZX08010002-005 to X. Shangguan), the Chinese Academy of Sciences (QYZDY-SSW-SMC026 and 153D31KYSB20160074 to X. Chen) and the Young Elite Scientists Sponsorship Program by CAST (2019QNRC001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **n Fang or **ao-Ya Chen.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, JQ., Lin, JL., Guo, XX. et al. RES transformation for biosynthesis and detoxification. Sci. China Life Sci. 63, 1297–1302 (2020). https://doi.org/10.1007/s11427-020-1729-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1729-5

Keywords

Navigation