Log in

AMPK and cardiac remodelling

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Cardiac remodelling is generally accepted as a critical process in the progression of heart failure. Myocyte hypertrophy, inflammatory responses and cardiac fibrosis are the main pathological changes associated with cardiac remodelling. AMP-activated protein kinase (AMPK) is known as an energy sensor and a regulator of cardiac metabolism under normal and ischaemic conditions. Additionally, AMPK has been shown to play roles in cardiac remodelling extending well beyond metabolic regulation. In this review, we discuss the currently defined roles of AMPK in cardiac remodelling and summarize the effects of AMPK on cardiac hypertrophy, inflammatory responses and fibrosis and the molecular mechanisms underlying these effects. In addition, we discuss some pharmacological activators of AMPK that are promising treatments for cardiac remodelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abumrad, N.A., and Goldberg, I.J. (2016). CD36 actions in the heart: lipids, calcium, inflammation, repair and more? Biochim Biophys Acta 1861, 1442–1449.

    Article  CAS  PubMed  Google Scholar 

  • Ai, F., Chen, M., Yu, B., Yang, Y., Xu, G., Gui, F., Liu, Z., Bai, X., and Chen, Z. (2015). Berberine regulates proliferation, collagen synthesis and cytokine secretion of cardiac fibroblasts via AMPK-mTOR-p70s6k signaling pathway. Int J Clin Exp Pathol 8, 12509–12516.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alesutan, I., Voelkl, J., Stöckigt, F., Mia, S., Feger, M., Primessnig, U., Sopjani, M., Munoz, C., Borst, O., Gawaz, M., Pieske, B., Metzler, B., Heinzel, F., Schrickel, J.W., and Lang, F. (2015). AMP-activated protein kinase A1 regulates cardiac gap junction protein connexin 43 and electrical remodeling following pressure overload. Cell Physiol Biochem 35, 406–418.

    Article  CAS  PubMed  Google Scholar 

  • Bai, J., Zhang, N., Hua, Y., Wang, B., Ling, L., Ferro, A., and Xu, B. (2013). Metformin inhibits angiotensin II-induced differentiation of cardiac fibroblasts into myofibroblasts. PLoS ONE 8, e72120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benziane, B., Björnholm, M., Lantier, L., Viollet, B., Zierath, J.R., and Chibalin, A.V. (2009). AMP-activated protein kinase activator A-769662 is an inhibitor of the Na+-K+-ATPase. Am J Physiol Cell Physiol 297, C1554–C1566.

    Article  CAS  PubMed  Google Scholar 

  • Carè, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., Bang, M.L., Segnalini, P., Gu, Y., Dalton, N.D., Elia, L., Latronico, M.V., Høydal, M., Autore, C., Russo, M.A., Dorn, G.W.Nd., Ellingsen, O., Ruiz-Lozano, P., Peterson, K.L., Croce, C.M., Peschle, C., and Condorelli, G. (2007). MicroRNA-133 controls cardiac hypertrophy. Nat Med 13, 613–618.

    Article  PubMed  Google Scholar 

  • Chan, A.Y.M., Dolinsky, V.W., Soltys, C.L.M., Viollet, B., Baksh, S., Light, P.E., and Dyck, J.R.B. (2008). Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. J Biol Chem 283, 24194–24201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, A.Y.M., Soltys, C.L.M., Young, M.E., Proud, C.G., and Dyck, J.R.B. (2004). Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. J Biol Chem 279, 32771–32779.

    Article  CAS  PubMed  Google Scholar 

  • Chang, W., Zhang, M., Meng, Z., Yu, Y., Yao, F., Hatch, G.M., and Chen, L. (2015). Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5′-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells. Eur J Pharmacol 769, 55–63.

    Article  CAS  PubMed  Google Scholar 

  • Chen, B., Ma, Y., Meng, R., **ong, Z., Wang, H., Zeng, J., Liu, C., and Dong, Y. (2010a). Activation of AMPK inhibits cardiomyocyte hypertrophy by modulating of the FOXO1/MuRF1 signaling pathway in vitro. Acta Pharmacol Sin 31, 798–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, H., Untiveros, G.M., McKee, L.A.K., Perez, J., Li, J., Antin, P.B., and Konhilas, J.P. (2012). Micro-RNA-195 and-451 regulate the LKB1/AMPK signaling axis by targeting MO25. PLoS ONE 7, e41574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L.L., Zhu, T.B., Yin, H., Huang, J., Wang, L.S., Cao, K.J., and Yang, Z.J. (2010b). Inhibition of MAPK signaling by eNOS gene transfer improves ventricular remodeling after myocardial infarction through reduction of inflammation. Mol Biol Rep 37, 3067–3072.

    Article  CAS  PubMed  Google Scholar 

  • Chen, R., Feng, Y., Wu, J., Song, Y., Li, H., Shen, Q., Li, D., Zhang, J., Lu, Z., **ao, H., and Zhang, Y. (2017). Metformin attenuates angiotensin II-induced TGFβ1 expression by targeting hepatocyte nuclear factor-4-α. Br J Pharmacol in press doi: 10.1111/bph.13753.

    Google Scholar 

  • Chen, Z., Peng, I.C., Sun, W., Su, M.I., Hsu, P.H., Fu, Y., Zhu, Y., DeFea, K., Pan, S., Tsai, M.D., and Shyy, J.Y.J. (2009). AMP-activated protein kinase functionally phosphorylates endothelial nitric oxide synthase Ser633. Circ Res 104, 496–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnakkannu, P., Samanna, V., Cheng, G., Ablonczy, Z., Baicu, C.F., Bethard, J.R., Menick, D.R., Kuppuswamy, D., and Cooper Iv, G. (2010). Site-specific microtubule-associated protein 4 dephosphorylation causes microtubule network densification in pressure overload cardiac hypertrophy. J Biol Chem 285, 21837–21848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, H.C., Song, P., **e, Z., Wu, Y., Xu, J., Zhang, M., Dong, Y., Wang, S., Lau, K., and Zou, M.H. (2008). Reactive nitrogen species is required for the activation of the AMP-activated protein kinase by statin in vivo. J Biol Chem 283, 20186–20197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, S.Y., Park, J.S., Roh, M.S., Kim, C.R., Kim, M.H., and Serebruany, V. (2017). Inhibition of angiotensin II-induced cardiac fibrosis by atorvastatin in adiponectin knockout mice. Lipids 52, 415–422.

    Article  CAS  PubMed  Google Scholar 

  • Chong, Z.Z., Wang, S., Shang, Y.C., and Maiese, K. (2012). Targeting cardiovascular disease with novel SIRT1 pathways. Future Cardiol 8, 89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cieslik, K.A., Taffet, G.E., Crawford, J.R., Trial, J.A., Mejia Osuna, P., and Entman, M.L. (2013). AICAR-dependent AMPK activation improves scar formation in the aged heart in a murine model of reperfused myocardial infarction. J Mol Cell Cardiol 63, 26–36.

    Article  CAS  PubMed  Google Scholar 

  • Daskalopoulos, E.P., Dufeys, C., Bertrand, L., Beauloye, C., and Horman, S. (2016). AMPK in cardiac fibrosis and repair: actions beyond metabolic regulation. J Mol Cell Cardiol 91, 188–200.

    Article  CAS  PubMed  Google Scholar 

  • Diep, Q.N., Amiri, F., Touyz, R.M., Cohn, J.S., Endemann, D., Neves, M.F., and Schiffrin, E.L. (2002). PPARalpha activator effects on Ang II-induced vascular oxidative stress and inflammation. Hypertension 40, 866–871.

    Article  CAS  PubMed  Google Scholar 

  • Dolinsky, V.W., and Dyck, J.R.B. (2006). Role of AMP-activated protein kinase in healthy and diseased hearts. Am J Physiol Heart Circ Physiol 291, H2557–H2569.

    Article  CAS  PubMed  Google Scholar 

  • Du, J., Guan, T., Zhang, H., **a, Y., Liu, F., and Zhang, Y. (2008). Inhibitory crosstalk between ERK and AMPK in the growth and proliferation of cardiac fibroblasts. Biochem Biophys Res Commun 368, 402–407.

    Article  CAS  PubMed  Google Scholar 

  • Fassett, J.T., Hu, X., Xu, X., Lu, Z., Zhang, P., Chen, Y., and Bache, R.J. (2013). AMPK attenuates microtubule proliferation in cardiac hypertrophy. Am J Physiol Heart Circ Physiol 304, H749–H758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foody, J.A.M., Shah, R., Galusha, D., Masoudi, F.A., Havranek, E.P., and Krumholz, H.M. (2006). Statins and mortality among elderly patients hospitalized with heart failure. Circulation 113, 1086–1092.

    Article  CAS  PubMed  Google Scholar 

  • Fu, Y., **ao, H., Ma, X., Jiang, S., Xu, M., and Zhang, Y. (2011). Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation. Acta Pharmacol Sin 32, 879–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita, K., Maeda, N., Sonoda, M., Ohashi, K., Hibuse, T., Nishizawa, H., Nishida, M., Hiuge, A., Kurata, A., Kihara, S., Shimomura, I., and Funahashi, T. (2008). Adiponectin protects against angiotensin II-induced cardiac fibrosis through activation of PPAR-alpha. Arterioscler Thromb Vasc Biol 28, 863–870.

    Article  CAS  PubMed  Google Scholar 

  • Gjesdal, O., Bluemke, D.A., and Lima, J.A. (2011). Cardiac remodeling at the population level—risk factors, screening, and outcomes. Nat Rev Cardiol 8, 673–685.

    Article  PubMed  Google Scholar 

  • Grahame Hardie, D. (2016). Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B 6, 1–19.

    Article  PubMed  Google Scholar 

  • Gurusamy, N., Lekli, I., Mukherjee, S., Ray, D., Ahsan, M.K., Gherghiceanu, M., Popescu, L.M., and Das, D.K. (2010). Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res 86, 103–112.

    Article  CAS  PubMed  Google Scholar 

  • Gwinn, D.M., Shackelford, D.B., Egan, D.F., Mihaylova, M.M., Mery, A., Vasquez, D.S., Turk, B.E., and Shaw, R.J. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30, 214–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habets, D.D.J., Coumans, W.A., Voshol, P.J., den Boer, M.A.M., Febbraio, M., Bonen, A., Glatz, J.F.C., and Luiken, J.J.F.P. (2007). AMPK-mediated increase in myocardial long-chain fatty acid uptake critically depends on sarcolemmal CD36. Biochem Biophys Res Commun 355, 204–210.

    Article  CAS  PubMed  Google Scholar 

  • Heart Protection Study Collaborative Group. (2002). MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20, 536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360, 7–22.

    Article  Google Scholar 

  • Hermida, N., Markl, A., Hamelet, J., Van Assche, T., Vanderper, A., Herijgers, P., van Bilsen, M., Hilfiker-Kleiner, D., Noppe, G., Beauloye, C., Horman, S., and Balligand, J.L. (2013). HMGCoA reductase inhibition reverses myocardial fibrosis and diastolic dysfunction through AMP-activated protein kinase activation in a mouse model of metabolic syndrome. Cardiovasc Res 99, 44–54.

    Article  CAS  PubMed  Google Scholar 

  • Hernández, J.S., Barreto-Torres, G., Kuznetsov, A.V., Khuchua, Z., and Javadov, S. (2014). Crosstalk between AMPK activation and angiotensin II-induced hypertrophy in cardiomyocytes: The role of mitochondria. J Cell Mol Med 18, 709–720.

    Article  PubMed  PubMed Central  Google Scholar 

  • Katare, P.B., Bagul, P.K., Dinda, A.K., and Banerjee, S.K. (2017). Toll-like receptor 4 inhibition improves oxidative stress and mitochondrial health in isoproterenol-induced cardiac hypertrophy in rats. Front Immunol 8, 719.

    Article  PubMed  PubMed Central  Google Scholar 

  • Izumi, Y., Shiota, M., Kusakabe, H., Hikita, Y., Nakao, T., Nakamura, Y., Muro, T., Miura, K., Yoshiyama, M., and Iwao, H. (2009). Pravastatin accelerates ischemia-induced angiogenesis through AMP-activated protein kinase. Hypertens Res 32, 675–679.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T.T., and Dyck, J.R.B. (2015). Is AMPK the savior of the failing heart? Trends Endocrinol Metab 26, 40–48.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T.T., and Dyck, J.R.B. (2016). The role of CD36 in the regulation of myocardial lipid metabolism. Biochim Biophys Acta 1861, 1450–1460.

    Article  CAS  PubMed  Google Scholar 

  • Kubli, D.A., and Gustafsson, A.B. (2014). Cardiomyocyte health: adapting to metabolic changes through autophagy. Trends Endocrinol Metab 25, 156–164.

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara, Y., Horie, T., Baba, O., Watanabe, S., Nishiga, M., Usami, S., Izuhara, M., Nakao, T., Nishino, T., Otsu, K., Kita, T., Kimura, T., and Ono, K. (2015). MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK pathway. Circ Res 116, 279–288.

    Article  CAS  PubMed  Google Scholar 

  • Lan, F., Cacicedo, J.M., Ruderman, N., and Ido, Y. (2008). SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 283, 27628–27635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan, F., Weikel, K.A., Cacicedo, J.M., and Ido, Y. (2017). Resveratrol-induced AMP-activated protein kinase activation is cell-type dependent: lessons from basic research for clinical application. Nutrients 9, 751.

    Article  PubMed Central  Google Scholar 

  • Lewington, S., Whitlock, G., Clarke, R., Sherliker, P., Emberson, J., Halsey, J., Qizilbash, N., Peto, R., and Collins, R. (2007). Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55, 000 vascular deaths. Lancet 370, 1829–1839.

    Article  PubMed  Google Scholar 

  • Li, J., Hu, X., Selvakumar, P., Russell, R.R., Cushman, S.W., Holman, G.D., and Young, L.H. (2004). Role of the nitric oxide pathway in AMPKmediated glucose uptake and GLUT4 translocation in heart muscle. Am J Physiol Endocrinol Metab 287, e834–E841.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Cai, X., Guan, Y., Wang, L., Wang, S., Li, Y., Fu, Y., Gao, X., and Su, G. (2016). Adiponectin upregulates MiR-133a in cardiac hypertrophy through AMPK activation and reduced ERK1/2 phosphorylation. PLoS ONE 11, e0148482.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Chen, C., Yao, F., Su, Q., Liu, D., Xue, R., Dai, G., Fang, R., Zeng, J., Chen, Y., Huang, H., Ma, Y., Li, W., Zhang, L., Liu, C., and Dong, Y. (2014). AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1. Arch Biochem Biophys 558, 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Wang, J., and Yang, X. (2015). Functions of autophagy in pathological cardiac hypertrophy. Int J Biol Sci 11, 672–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, L., Wang, C., Lin, Y., **, Y., Li, H., Shi, S., Li, H., Zhang, W., Zhao, Y., Tian, Y., Xu, C., and Wang, L. (2016). Suppression of calcium-sensing receptor ameliorates cardiac hypertrophy through inhibition of autophagy. Mol Med Rep 14, 111–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, L., Wang, C., Sun, D., Jiang, S., Li, H., Zhang, W., Zhao, Y., **, Y., Shi, S., Lu, F., Tian, Y., Xu, C., and Wang, L. (2015). Calhex231 ameliorates cardiac hypertrophy by inhibiting cellular autophagy in vivo and in vitro. Cell Physiol Biochem 36, 1597–1612.

    Article  CAS  PubMed  Google Scholar 

  • Lombard, D.B., and Zwaans, B.M. (2014). SIRT3: as simple as it seems? Gerontology 60, 56–64.

    Article  CAS  PubMed  Google Scholar 

  • Lu, W.W., Zhao, L., Zhang, J.S., Hou, Y.L., Yu, Y.R., Jia, M.Z., Tang, C.S., and Qi, Y.F. (2015). Intermedin1-53 protects against cardiac hypertrophy by inhibiting endoplasmic reticulum stress via activating AMP-activated protein kinase. J Hypertens 33, 1676–1687.

    Article  CAS  PubMed  Google Scholar 

  • Ma, X., Fu, Y., **ao, H., Song, Y., Chen, R., Shen, J., An, X., Shen, Q., Li, Z., and Zhang, Y. (2015). Cardiac fibrosis alleviated by exercise training is AMPK-dependent. PLoS ONE 10, e0129971.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng, R., Pei, Z., Zhang, A., Zhou, Y., Cai, X., Chen, B., Liu, G., Mai, W., Wei, J., and Dong, Y. (2011). AMPK activation enhances PPARα activity to inhibit cardiac hypertrophy via ERK1/2 MAPK signaling pathway. Arch Biochem Biophys 511, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Meng, R.S., Pei, Z.H., Yin, R., Zhang, C.X., Chen, B.L., Zhang, Y., Liu, D., Xu, A.L., and Dong, Y.G. (2009). Adenosine monophosphate-activated protein kinase inhibits cardiac hypertrophy through reactivating peroxisome proliferator-activated receptor-α signaling pathway. Eur J Pharmacol 620, 63–70.

    Article  CAS  PubMed  Google Scholar 

  • Mohan, M., McSwiggan, S., Baig, F., Rutherford, L., and Lang, C.C. (2015). Metformin and its effects on myocardial dimension and left ventricular hypertrophy in normotensive patients with coronary heart disease (the MET-REMODEL study): rationale and design of the MET-REMODEL study. Cardiovasc Ther 33, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Nesti, L., and Natali, A. (2017). Metformin effects on the heart and the cardiovascular system: a review of experimental and clinical data. Nutr Metab Cardiovasc Dis 27, 657–669.

    Article  CAS  PubMed  Google Scholar 

  • Noppe, G., Dufeys, C., Buchlin, P., Marquet, N., Castanares-Zapatero, D., Balteau, M., Hermida, N., Bouzin, C., Esfahani, H., Viollet, B., Bertrand, L., Balligand, J.L., Vanoverschelde, J.L., Beauloye, C., and Horman, S. (2014). Reduced scar maturation and contractility lead to exaggerated left ventricular dilation after myocardial infarction in mice lacking AMPKα1. J Mol Cell Cardiol 74, 32–43.

    Article  CAS  PubMed  Google Scholar 

  • Peng, W., Zhang, Y., Zhu, W., Cao, C.M., and **ao, R.P. (2009). AMPK and TNF-alpha at the crossroad of cell survival and death in ischaemic heart. Cardiovasc Res 84, 1–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, D., and Young, L.H. (2015). AMPK: energy sensor and survival mechanism in the ischemic heart. Trends Endocrinol Metab 26, 422–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichert, K., Pereira do Carmo, H.R., Galluce Torina, A., Diógenes de Carvalho, D., Sposito, A.C., de Souza Vilarinho, K.A., da Mota Silveira-Filho, L., de Oliveira, P.P.M., and Petrucci, O. (2016). Atorvastatin improves ventricular remodeling after myocardial infarction by interfering with collagen metabolism. PLoS ONE 11, e0166845.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richter, K., and Kietzmann, T. (2016). Reactive oxygen species and fibrosis: further evidence of a significant liaison. Cell Tissue Res 365, 591–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruderman, N.B., Xu, X.J., Nelson, L., Cacicedo, J.M., Saha, A.K., Lan, F., and Ido, Y. (2010). AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab 298, E751–E760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salt, I.P., and Hardie, D.G. (2017). AMP-activated protein kinase. Circ Res 120, 1825–1841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salt, I.P., and Palmer, T.M. (2012). Exploiting the anti-inflammatory effects of AMP-activated protein kinase activation. Expert Opin Investig Drugs 21, 1155–1167.

    Article  CAS  PubMed  Google Scholar 

  • Soraya, H., Clanachan, A.S., Rameshrad, M., Maleki-Dizaji, N., Ghazi-Khansari, M., and Garjani, A. (2014). Chronic treatment with metformin suppresses toll-like receptor 4 signaling and attenuates left ventricular dysfunction following myocardial infarction. Eur J Pharmacol 737, 77–84.

    Article  CAS  PubMed  Google Scholar 

  • Soraya, H., Farajnia, S., Khani, S., Rameshrad, M., Khorrami, A., Banani, A., Maleki-Dizaji, N., and Garjani, A. (2012b). Short-term treatment with metformin suppresses toll like receptors (TLRS) activity in isoproterenol-induced myocardial infarction in rat: are AMPK and TLRS connected? Int Immunopharmacol 14, 785–791.

    Article  CAS  PubMed  Google Scholar 

  • Soraya, H., Khorrami, A., Garjani, A., Maleki-Dizaji, N., and Garjani, A. (2012a). Acute treatment with metformin improves cardiac function following isoproterenol induced myocardial infarction in rats. Pharmacol Rep 64, 1476–1484.

    Article  CAS  PubMed  Google Scholar 

  • Soraya, H., Rameshrad, M., Mokarizadeh, A., and Garjani, A. (2015). Metformin attenuates myocardial remodeling and neutrophil recruitment after myocardial infarction in rat. Bioimpacts 5, 3–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, W., Lee, T.S., Zhu, M., Gu, C., Wang, Y., Zhu, Y., and Shyy, J.Y.J. (2006). Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation 114, 2655–2662.

    Article  CAS  PubMed  Google Scholar 

  • Sung, M.M., and Dyck, J.R.B. (2015). Therapeutic potential of resveratrol in heart failure. Ann NY Acad Sci 1348, 32–45.

    Article  CAS  PubMed  Google Scholar 

  • Terai, K., Hiramoto, Y., Masaki, M., Sugiyama, S., Kuroda, T., Hori, M., Kawase, I., and Hirota, H. (2005). AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol 25, 9554–9575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tham, Y.K., Bernardo, B.C., Ooi, J.Y.Y., Weeks, K.L., and McMullen, J.R. (2015). Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 89, 1401–1438.

    Article  CAS  PubMed  Google Scholar 

  • Tian, R., Musi, N., D’Agostino, J., Hirshman, M.F., and Goodyear, L.J. (2001). Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy. Circulation 104, 1664–1669.

    Article  CAS  PubMed  Google Scholar 

  • Timmers, L., Sluijter, J.P.G., van Keulen, J.K., Hoefer, I.E., Nederhoff, M.G.J., Goumans, M.J., Doevendans, P.A., van Echteld, C.J.A., Joles, J.A., Quax, P.H., Piek, J.J., Pasterkamp, G., and de Kleijn, D.P.V. (2008). Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circul Res 102, 257–264.

    Article  CAS  Google Scholar 

  • Travers, J.G., Kamal, F.A., Robbins, J., Yutzey, K.E., and Blaxall, B.C. (2016). Cardiac fibrosis. Circ Res 118, 1021–1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaez, H., Najafi, M., Rameshrad, M., Toutounchi, N.S., Garjani, M., Barar, J., and Garjani, A. (2016). AMPK activation by metformin inhibits local innate immune responses in the isolated rat heart by suppression of TLR 4-related pathway. Int Immunopharmacol 40, 501–507.

    Article  CAS  PubMed  Google Scholar 

  • Voelkl, J., Alesutan, I., Primessnig, U., Feger, M., Mia, S., Jungmann, A., Castor, T., Viereck, R., Stöckigt, F., Borst, O., Gawaz, M., Schrickel, J.W., Metzler, B., Katus, H.A., Müller, O.J., Pieske, B., Heinzel, F.R., and Lang, F. (2016). AMP-activated protein kinase α1-sensitive activation of AP-1 in cardiomyocytes. J Mol Cell Cardiol 97, 36–43.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., Zeng, H., Wen, Z., Chen, C., and Wang, D.W. (2016a). CYP2J2 and its metabolites (epoxyeicosatrienoic acids) attenuate cardiac hypertrophy by activating AMPKα2 and enhancing nuclear translocation of Akt1. Aging Cell 15, 940–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Gao, M., Chen, J., Yang, Z., Sun, J., Wang, Z., Huang, X., Yuan, T., Shen, X., and **an, S. (2015). Resveratrol ameliorates pressure overload-induced cardiac dysfunction and attenuates autophagy in rats. J Cardiovasc Pharmacol 66, 376–382.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Binder, P., Fang, Q., Wang, Z., **ao, W., Liu, W., and Wang, X. (2017). Endoplasmic reticulum stress in the heart: insights into mechanisms and drug targets. Br J Pharmacol in press doi: 10.1111/bph.13888.

    Google Scholar 

  • Wang, S., Song, P., and Zou, M.H. (2012). AMP-activated protein kinase, stress responses and cardiovascular diseases. Clin Sci 122, 555–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X.X., Wang, X.L., Tong, M., Gan, L., Chen, H., Wu, S., Chen, J.X., Li, R.L., Wu, Y., Zhang, H., Zhu, Y., Li, Y., He, J., Wang, M., and Jiang, W. (2016b). SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3α-dependent antioxidant defense mechanisms. Basic Res Cardiol 111, 13.

    Article  CAS  PubMed  Google Scholar 

  • Wong, A.K.F., Howie, J., Petrie, J.R., and Lang, C.C. (2009). AMP-activated protein kinase pathway: a potential therapeutic target in cardiometabolic disease. Clin Sci 116, 607–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, D., Lei, H., Wang, J.Y., Zhang, C.L., Feng, H., Fu, F.Y., Li, L., and Wu, L.L. (2015). CTRP3 attenuates post-infarct cardiac fibrosis by targeting Smad3 activation and inhibiting myofibroblast differentiation. J Mol Med 93, 1311–1325.

    Article  CAS  PubMed  Google Scholar 

  • **ao, H., Ma, X., Feng, W., Fu, Y., Lu, Z., Xu, M., Shen, Q., Zhu, Y., and Zhang, Y. (2010). Metformin attenuates cardiac fibrosis by inhibiting the TGFβ1-Smad3 signalling pathway. Cardiovasc Res 87, 504–513.

    Article  CAS  PubMed  Google Scholar 

  • **ao, H., Zhang, J., Xu, Z., Feng, Y., Zhang, M., Liu, J., Chen, R., Shen, J., Wu, J., Lu, Z., Fang, X., Li, J., and Zhang, Y. (2016). Metformin is a novel suppressor for transforming growth factor (TGF)-β1. Sci Rep 6, 28597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **ao, Y., Chang, W., Wu, Q.Q., Jiang, X.H., Duan, M.X., **, Y.G., and Tang, Q.Z. (2017). Aucubin protects against TGFβ1-induced cardiac fibroblasts activation by mediating the AMPKα/mTOR signaling pathway. Planta Med in press doi: 10.1055/s-0043-118663.

    Google Scholar 

  • Xu, X., Lu, Z., Fassett, J., Zhang, P., Hu, X., Liu, X., Kwak, D., Li, J., Zhu, G., Tao, Y., Hou, M., Wang, H., Guo, H., Viollet, B., McFalls, E.O., Bache, R.J., and Chen, Y. (2014). Metformin protects against systolic overload-induced heart failure independent of AMP-activated protein kinase α2novelty and significance. Hypertension 63, 723–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarrinpashneh, E., Beauloye, C., Ginion, A., Pouleur, A.C., Havaux, X., Hue, L., Viollet, B., Vanoverschelde, J.L., and Bertrand, L. (2008). AMPKα2 counteracts the development of cardiac hypertrophy induced by isoproterenol. Biochem Biophys Res Commun 376, 677–681.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y.E. (2017). Non-smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol 9, a022129.

    Article  PubMed  Google Scholar 

  • Zheng, Q., Zhao, K., Han, X., Huff, A.F., Cui, Q., Babcock, S.A., Yu, S., and Zhang, Y. (2015). Inhibition of AMPK accentuates prolonged caloric restriction-induced change in cardiac contractile function through disruption of compensatory autophagy. Biochim Biophys Acta 1852, 332–342.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M.F., Goodyear, L.J., and Moller, D.E. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108, 1167–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuo, X.Z., Wu, Y., Ni, Y.J., Liu, J.H., Gong, M., Wang, X.H., Wei, F., Wang, T.Z., Yuan, Z., Ma, A.Q., and Song, P. (2013). Isoproterenol instigates cardiomyocyte apoptosis and heart failure via AMPK inactivation-mediated endoplasmic reticulum stress. Apoptosis 18, 800–810.

    Article  CAS  PubMed  Google Scholar 

  • Zordoky, B.N.M., Robertson, I.M., and Dyck, J.R.B. (2015). Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim Biophys Acta 1852, 1155–1177.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81530009 to Youyi Zhang, 81670205 to Han **ao).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han **ao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Zhang, Y. & **ao, H. AMPK and cardiac remodelling. Sci. China Life Sci. 61, 14–23 (2018). https://doi.org/10.1007/s11427-017-9197-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9197-5

Keywords

Navigation