Log in

Structurally modulated Li-rich cathode materials through cooperative cation do** and anion hybridization

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

High capacity Li-rich materials are mighty contenders for building rechargeable batteries that coincide with the demand in energy density. Fully realizing the extraordinary capacity involves oxygen evolution and related cation migration, resulting in phase transitions and deteriorations that would hinder their practical application. In an attempt to enhance the anodic redox participation and stabilize the structure at the same time, we proposed a structural modulation strategy with modification on anion hybridization intensifying and cation do**. Spectator ions with large ionic radius were introduced into the lattice during calcination with stannous chloride and the d-p hybridization between transition metal 3d and oxygen 2p orbitals was subsequently intensified along with expelling weakly bonded chloride species in the reheating process. Both of the reversible capacity and stability upon cycling were remarkably improved through the cooperation of bond alteration and dopant. This strategy might provide new insight into the modulation of the structure to truly fulfill the potential of Li-rich materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodenough JB, Park KS. J Am Chem Soc, 2013, 135: 1167–1176

    Article  CAS  Google Scholar 

  2. Seo DH, Lee J, Urban A, Malik R, Kang SY, Ceder G. Nat Chem, 2016, 8: 692–697

    Article  CAS  Google Scholar 

  3. **n S, Chang ZW, Zhang XB, Guo YG. Natl Sci Rev, 2017, 4: 54–70

    Google Scholar 

  4. Dunn B, Kamath H, Tarascon JM. Science, 2011, 334: 928–935

    Article  CAS  Google Scholar 

  5. Whittingham MS. Chem Rev, 2004, 104: 4271–4302

    Article  CAS  Google Scholar 

  6. Liu W, Oh P, Liu X, Lee MJ, Cho W, Chae S, Kim Y, Cho J. Angew Chem Int Ed, 2015, 54: 4440–4457

    Article  CAS  Google Scholar 

  7. Freire M, Kosova NV, Jordy C, Chateigner D, Lebedev OI, Maignan A, Pralong V. Nat Mater, 2016, 15: 173–177

    Article  CAS  Google Scholar 

  8. Lu Z, MacNeil DD, Dahn JR. Electrochem Solid-State Lett, 2001, 4: A191

    Article  CAS  Google Scholar 

  9. Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA. J Mater Chem, 2005, 15: 2257–2267

    Article  CAS  Google Scholar 

  10. Yu H, Ishikawa R, So YG, Shibata N, Kudo T, Zhou H, Ikuhara Y. Angew Chem Int Ed, 2013, 52: 5969–5973

    Article  CAS  Google Scholar 

  11. Gu L, **ao D, Hu YS, Li H, Ikuhara Y. Adv Mater, 2015, 27: 2134–2149

    Article  CAS  Google Scholar 

  12. Long BR, Croy JR, Dogan F, Suchomel MR, Key B, Wen J, Miller DJ, Thackeray MM, Balasubramanian M. Chem Mater, 2014, 26: 3565–3572

    Article  CAS  Google Scholar 

  13. Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang SH, Thackeray MM, Bruce PG. J Am Chem Soc, 2006, 128: 8694–8698

    Article  CAS  Google Scholar 

  14. Tran N, Croguennec L, Ménétrier M, Weill F, Biensan P, Jordy C, Delmas C. Chem Mater, 2008, 20: 4815–4825

    Article  CAS  Google Scholar 

  15. Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S. J Am Chem Soc, 2011, 133: 4404–4419

    Article  CAS  Google Scholar 

  16. Xu B, Fell CR, Chi M, Meng YS. Energ Environ Sci, 2011, 4: 2223–2233

    Article  CAS  Google Scholar 

  17. Luo K, Roberts MR, Hao R, Guerrini N, Pickup DM, Liu YS, Edström K, Guo J, Chadwick AV, Duda LC, Bruce PG. Nat Chem, 2016, 8: 684–691

    Article  CAS  Google Scholar 

  18. Sathiya M, Rousse G, Ramesha K, Laisa CP, Vezin H, Sougrati MT, Doublet ML, Foix D, Gonbeau D, Walker W, Prakash AS, Ben Hassine M, Dupont L, Tarascon JM. Nat Mater, 2013, 12: 827–835

    Article  CAS  Google Scholar 

  19. Foix D, Sathiya M, McCalla E, Tarascon JM, Gonbeau D. J Phys Chem C, 2016, 120: 862–874

    Article  CAS  Google Scholar 

  20. Luo K, Roberts MR, Guerrini N, Tapia-Ruiz N, Hao R, Massel F, Pickup DM, Ramos S, Liu YS, Guo J, Chadwick AV, Duda LC, Bruce PG. J Am Chem Soc, 2016, 138: 11211–11218

    Article  CAS  Google Scholar 

  21. Qiu B, Zhang M, Wu L, Wang J, **a Y, Qian D, Liu H, Hy S, Chen Y, An K, Zhu Y, Liu Z, Meng YS. Nat Commun, 2016, 7: 12108

    Article  CAS  Google Scholar 

  22. Chen CJ, Pang WK, Mori T, Peterson VK, Sharma N, Lee PH, Wu SH, Wang CC, Song YF, Liu RS. J Am Chem Soc, 2016, 138: 8824–8833

    Article  CAS  Google Scholar 

  23. Zheng F, Yang C, **ong X, **ong J, Hu R, Chen Y, Liu M. Angew Chem Int Ed, 2015, 54: 13058–13062

    Article  CAS  Google Scholar 

  24. Sathiya M, Abakumov AM, Foix D, Rousse G, Ramesha K, Saubanère M, Doublet ML, Vezin H, Laisa CP, Prakash AS, Gonbeau D, VanTendeloo G, Tarascon JM. Nat Mater, 2015, 14: 230–238

    Article  CAS  Google Scholar 

  25. Wei W, Chen L, Pan A, Ivey DG. Nano Energy, 2016, 30: 580–602

    Article  CAS  Google Scholar 

  26. Oh P, Ko M, Myeong S, Kim Y, Cho J. Adv Energ Mater, 2014, 4: 1400631

    Article  Google Scholar 

  27. Wang PF, You Y, Yin YX, Wang YS, Wan LJ, Gu L, Guo YG. Angew Chem Int Ed, 2016, 55: 7445–7449

    Article  CAS  Google Scholar 

  28. Muhammad S, Kim H, Kim Y, Kim D, Song JH, Yoon J, Park JH, Ahn SJ, Kang SH, Thackeray MM, Yoon WS. Nano Energy, 2016, 21: 172–184

    Article  CAS  Google Scholar 

  29. Zhang J, Guo X, Yao S, Qiu X. Sci China Chem, 2016, 59: 1479–1485

    Article  CAS  Google Scholar 

  30. Shi JL, Zhang JN, He M, Zhang XD, Yin YX, Li H, Guo YG, Gu L, Wan LJ. ACS Appl Mater Interfaces, 2016, 8: 20138–20146

    Article  CAS  Google Scholar 

  31. Qing RP, Shi JL, **ao DD, Zhang XD, Yin YX, Zhai YB, Gu L, Guo YG. Adv Energ Mater, 2016, 6: 1501914

    Article  Google Scholar 

  32. Deng YP, Fu F, Wu ZG, Yin ZW, Zhang T, Li JT, Huang L, Sun SG. J Mater Chem A, 2016, 4: 257–263

    Article  CAS  Google Scholar 

  33. de Groot FMF, Grioni M, Fuggle JC, Ghijsen J, Sawatzky GA, Petersen H. Phys Rev B, 1989, 40: 5715–5723

    Article  Google Scholar 

  34. Nesbitt HW, Legrand D, Bancroft GM. Phys Chem Miner, 2000, 27: 357–366

    Article  CAS  Google Scholar 

  35. Kühnel RS, Balducci A. J Power Sources, 2014, 249: 163–171

    Article  Google Scholar 

  36. Tong Z, Tian Y, Zhang H, Li X, Ji J, Qu H, Li N, Zhao J, Li Y. Sci China Chem, 2017, 60: 13–37

    Article  CAS  Google Scholar 

  37. Schipper F, Erickson EM, Erk C, Shin JY, Chesneau FF, Aurbach D. J Electrochem Soc, 2017, 164: A6220–A6228

    Article  CAS  Google Scholar 

  38. Wang Y, Yang Z, Qian Y, Gu L, Zhou H. Adv Mater, 2015, 27: 3915–3920

    Article  CAS  Google Scholar 

  39. Yu X, Lyu Y, Gu L, Wu H, Bak SM, Zhou Y, Amine K, Ehrlich SN, Li H, Nam KW, Yang XQ. Adv Energ Mater, 2014, 4: 1300950

    Article  Google Scholar 

  40. Shi JL, **ao DD, Zhang XD, Yin YX, Guo YG, Gu L, Wan LJ. Nano Res, 2017, 1–9

    Google Scholar 

  41. Wang JL, Luo H, Mai YJ, Zhao XY, Zhang LZ. Sci China Chem, 2013, 56: 739–745

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (2016YFA0202500), the National Natural Science Foundation of China (51225204, 21127901), and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA09010100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-** and Anion Hybridization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XD., Shi, JL., Liang, JY. et al. Structurally modulated Li-rich cathode materials through cooperative cation do** and anion hybridization. Sci. China Chem. 60, 1554–1560 (2017). https://doi.org/10.1007/s11426-017-9123-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9123-0

Keywords

Navigation