Log in

Application of life cycle assessment in the mining industry

  • LCA METHODOLOGY
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Background, aim, and scope

In spite of the increasing application of life cycle assessment (LCA) for engineering evaluation of systems and products, the application of LCA in the mining industry is limited. For example, a search in the Engineering Compendex database using the keywords “life cycle assessment” results in 2,257 results, but only 19 are related to the mining industry. Also, mining companies are increasingly adopting ISO 14001 certified environmental management systems (EMSs). A key requirement of ISO certified EMSs is continual improvement, which can be better managed with life cycle thinking. This paper presents a review of the current application of LCA in the mining industry. It discusses the current application, the issues, and challenges and makes relevant recommendations for new research to improve the current situation.

Main features

The paper reviews the major published articles in the literature pertaining to LCA methodology as applied in the mining industry. The challenges associated with LCA applications in mining are discussed next. Finally, the authors present recommended research areas to increase the application of LCA in the mining industry.

Results

The literature review shows a limited number of published mining LCA studies. The paper also shows the variation in functional unit definition for mining LCA studies. The challenges and research needed to address the problems are highlighted in the discussions.

Discussion

The limited number of mining LCAs may be due to the lack of life cycle thinking in the industry. The paper, however, highlights the major contributions in the literature to LCA practice in the mining industry. This paper discusses the lack of LCA awareness and tools for mining LCAs, issues relating to functional unit and sco** of mining product systems, defining adequate and appropriate impact categories, and challenges with uncertainty and sensitivity analysis. The authors recommend that future research focus on the development of a mining-specific LCA framework, data uncertainty characterization, and software development to increase the application of LCA in mining.

Conclusions

LCA presents beneficial insights to the mining industry as it seeks to develop world-class EMSs and environmentally sustainable projects. However, to take full advantage of this technique, further research is necessary to improve the level of LCA application in mining. Major challenges have been identified, and recommended research areas have been proposed to improve the situation. The paper outlines the benefits of increased application of LCA in the mining industry to LCA databases and all practitioners.

Recommendations and perspectives

It is recommended that additional research be undertaken through industry–academia partnerships to develop a more rigorous mining-specific LCA framework. Such a framework should allow for sensitivity and uncertainty analysis while allowing for suitable data collection that still covers the temporal and spatial dimensions of mining. Research should also be carried out to develop objective ways of characterizing the uncertainty introduced in a LCA study due to the use of secondary data (emissions factors) from prior studies. Finally, new software or GUIs that address the peculiarities of mining should be developed to help mining professionals with basic LCA knowledge to undertake LCA studies of their systems and mines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. These are conditions imposed on the mining operation by the government agency that issues the mining permit.

  2. Processing plant is used here to refer to a plant that processes the ore to a useful product ready for use or requiring only refining.

References

  • Amatayakul W, Ramnas O (2001) Life cycle assessment of a catalytic converter for passenger cars. J Clean Prod 9:395–403

    Article  Google Scholar 

  • Aquilonius K, Hallberg HB, Bergstrom D, Lechon U, Cabal H, Saez RMS, Lepicard T, Ward S, Hamacher D, Korhonen T (2001) Sensitivity and uncertainty analyses in external cost assessments of fusion power. Fusion Eng Des 58-59:1021–1026

    Article  CAS  Google Scholar 

  • Awuah-Offei K, Checkel D, Askari-Nasab H (2008a) Evaluation of belt conveyor and truck haulage systems in an open pit mine using life cycle assessment. CIM Bulletin, Vol. 102, Paper 8, pp 1–6

  • Awuah-Offei K, Checkel D, Askari-Nasab H (2008b) Environmental life cycle assessment of belt conveyor and truck haulage systems in an open pit mine. SME Annual Conference, 24–27 Feb 2008, Salt Lake City, Utah

  • Basset-Mens C, Van der Werf HMG, Robin P, Morvan TH, Hassouna M, Paillat J-M, Vertès F (2007) Methods and data for the environmental inventory of contrasting pig production systems. J Clean Prod 15:1395–1405

    Article  Google Scholar 

  • Battisti R, Corrado A (2005) Environmental assessment of solar thermal collectors with integrated water storage. J Clean Prod 13:1295–1300

    Article  Google Scholar 

  • Benetto E, Dujet C, Rousseaux P (2006) Fuzzy-sets approach to noise impact assessment. Int J LCA 11(4):222–228

    Article  Google Scholar 

  • BHP Billiton (2006) BHP Billiton sustainability report. BHP Billiton, Australia, p 522

  • Bovea M-D, Saura Ú, Ferrero JL, Giner J (2007) Cradle-to-gate study of red clay for use in the ceramic industry. Int J of LCA 12(6):439–447

    Article  Google Scholar 

  • Canals LM, Bauer C, Depestele J, Dubreuil A, Knuchel RF, Gaillard G, Michelsen O, Müller-Wenk R, Rydgren B (2007) Key elements in a framework for land use impact assessment within LCA. Int J of LCA 12(1):5–15

    Article  Google Scholar 

  • Center of Environmental Science (CML) (2001) Life cycle assessment—an operational guide to ISO standards, version 2.02. Center of Environmental Science, The Netherlands

  • Chapin FS III, Zavaleta ES, Eviner VT, Naylor RT, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000) Consequences of changing biodiversity. Nature 405:234–242

    Article  CAS  Google Scholar 

  • Chaya W, Gheewala SH (2007) Life cycle assessment of MSW-to-energy schemes in Thailand. J Clean Prod 15:1463–1468

    Article  Google Scholar 

  • Chevalier J-L, Le Téno J-F (1996) Life cycle analysis with ill-defined data and it's application to building products. Int J of LCA 1(2):90–96

    Article  CAS  Google Scholar 

  • COM (2002) Towards a thematic strategy for soil protection. COM 179. Commission of the European Communities, Belgium

  • Durucan S, Korre A, Munoz-Melendez G (2006) Mining life cycle modelling: a cradle-to-gate approach to environmental management in the minerals industry. J Clean Prod 14:1057–1070

    Article  Google Scholar 

  • EEA, UNEP (2000) Down to earth: soil degradation and sustainable development in Europe, vol 16, Environmental issue series. European Environment Agency, Copenhagen

    Google Scholar 

  • Energy Information Administration (2008) Electric power monthly—November 2009, Report No. DOE/EIA-0226 (2009/11), p 14

  • Forbes P, von Blottnitz H, Gaylard P, Petrie JG (2000) Environmental assessment of base metal processing: nickel refining case study. J South Afr Inst Mining Metal 100:347–353

    Google Scholar 

  • Goedkoop M (1995) The ecoindicator '95: final report. PRé Consultants BV, The Netherlands

    Google Scholar 

  • Goedkoop M, Spriensma R (2000) The ecoindicator '99: a damage oriented method for life cycle impact assessment: methodology report. PRé Consultants BV, The Netherlands

    Google Scholar 

  • ISO TC 207 (2004) ISO 14001: 2004 environmental management systems—requirements with guidance for use. ISO, Switzerland

  • ISO TC 207 (2006) ISO 14040: 2006 environmental management—life cycle assessment—principles and framework. ISO, Switzerland

  • Jassbi J, Serra P, Ribeiro RA, Donati A (2006) Comparison of Mamdani and Sugeno fuzzy inference systems for a space fault detection application. Proceedings of the 2006 World Automation Congress (WAG 2006), Hungary

  • Jassbi J, Alavi SH, Serra PJA, Ribeiro RA (2007) Transformation of a Mamdani FIS to first order Sugeno FIS. IEEE 2007 Imperial College, London

  • Lloyd SM, Ries R (2007) Characterizing, propagating and analyzing uncertainty in life-cycle assessment: a survey of quantitative approaches. J Indust Ecol 11(1):161–179

    Article  Google Scholar 

  • Lo S-C, Ma H-W, Lo S-L (2005) Quantifying and reducing uncertainty in life cycle assessment using the Bayesian Monte Carlo method. Sci Total Environ 340:23–33

    Article  CAS  Google Scholar 

  • Mangena SJ, Brent AC (2006) Application of a life cycle impact assessment framework to evaluate and compare environmental performances with economic values of supplied coal products. J Clean Prod 14:1071–1084

    Article  Google Scholar 

  • Müller-Wenk R (1998) Land use—the main threat to species. How to include land use in LCA. IWÖ—Diskussionsbeitrag No. 64. Universität St. Gallen, Switzerland

    Google Scholar 

  • Pimentel D, Harvey C, Resusodarmo P, Sinclair K, Kurz D, Mcnair M, Crist S, Schpritz L, Fitton L, Saffouri R, Blair R (1995) Environmental and economic costs of soil erosion and conservation benefits. Science 267:1117–1123

    Article  CAS  Google Scholar 

  • PRé (2008) SIMAPRO 7.1. PRé Consultants B.V. Amersfoort, The Netherlands

  • Raynolds M, Fraser R, Checkel D (2000) The relative mass-energy-economic value (RMEE) method for system boundary selection—part I: a means to systematically and quantitatively select LCA boundaries. Int J LCA 5:96–104

    Article  Google Scholar 

  • Rio Tinto (2006) Rio Tinto minerals 2006 sustainable development report. Rio Tinto, Australia, p 24

  • Ross S, Evans D, Weber M (2002) How LCA studies deal with uncertainty. Int J of LCA 7(1):47–52

    Article  Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, LeRoy PN, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  Google Scholar 

  • Socolof ML, Jonathan G, Overly JG, Geibig JR (2005) Environmental life-cycle impacts of CRT and LCD desktop computer displays. J Clean Prod 13:1281–1294

    Article  Google Scholar 

  • Spitzley DV, Tolle DA (2004) Evaluating land-use impacts: selection of surface area metrics for life-cycle assessment of mining. J Indust Ecol 8(1–2):11–21

    Google Scholar 

  • Steen B (1999a) A systematic approach to environmental priority strategies in product development (EPS): version 2000—general system characteristics. CPM report 1999:4. Chalmers University of Technology, Göteborg

  • Steen B (1999b) A systematic approach to environmental strategies in product development (EPS): version 2000—models and data of the default methods. CPM Report 1999:5. Chalmers University of Technology, Göteborg

  • Sugeno M (1985) Industrial applications of fuzzy control. Elsevier Science, USA, p 269

    Google Scholar 

  • Suppen N, Carranza M, Hueta M, Hernandez MA (2006) Environmental management and life cycle approaches in the Mexican mining industry. J Clean Prod 14:1101–1115

    Article  Google Scholar 

  • Tan RR, Culaba AB, Purvis MRI (2002) Application of possibility theory in the life-cycle inventory assessment of biofuels. Int J Energy Res 26(8):737–745

    Article  CAS  Google Scholar 

  • Udo de Haes HA (2005) Land-use impacts of mining in the life cycle initiative. In: Dubreuil A (ed) Life cycle assessment of metals: issues and research directions. SETAC, USA, pp 159–163

    Google Scholar 

  • US EPA (1995) Guidelines for assessing the quality of life-cycle inventory analysis. US EPA, USA, p 118

  • US EPA (2003) Draft guidance on the development, evaluation and application of regulatory environmental models. US EPA, USA, p 60

  • US EPA (2006) Life cycle assessment: principles and practice. US EPA, USA, p 88

  • Van Zyl DJA (2005) Towards improved environmental indicators for mining using life-cycle thinking. In: Dubreuil A (ed) Life cycle assessment of metals: issues and research directions. SETAC, USA, pp 117–122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwame Awuah-Offei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awuah-Offei, K., Adekpedjou, A. Application of life cycle assessment in the mining industry. Int J Life Cycle Assess 16, 82–89 (2011). https://doi.org/10.1007/s11367-010-0246-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-010-0246-6

Keywords

Navigation