Log in

A better roadmap for designing novel bioactive glasses: effective approaches for the development of innovative revolutionary bioglasses for future biomedical applications

  • Advanced Nanobiomaterials for Environmental Remediation
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The introduction of bioactive glasses (BGs) precipitated a paradigm shift in the medical industry and opened the path for the development of contemporary regenerative medicine driven by biomaterials. This composition can bond to live bone and can induce osteogenesis by the release of physiologically active ions. 45S5 BG products have been transplanted effectively into millions of patients around the world, primarily to repair bone and dental defects. Over the years, many other BG compositions have been introduced as innovative biomaterials for repairing soft tissue and delivering drugs. When research first started, many of the accomplishments that have been made today were unimaginable. It appears that the true capacity of BGs has not yet been realized. Because of this, research involving BGs is extremely fascinating. However, to be successful, it requires interdisciplinary cooperation between physicians, glass chemists, and bioengineers. The present paper gives a picture of the existing clinical uses of BGs and illustrates key difficulties deserving to be faced in the future. The challenges range from the potential for BGs to be used in a wide variety of applications. We have high hopes that this paper will be of use to both novice researchers, who are just beginning their journey into the world of BGs, as well as seasoned scientists, in that it will promote conversation regarding potential additional investigation and lead to the discovery of innovative medical applications for BGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The availability of data and materials are limited to those presented in this manuscript.

References

  • Abou Neel EA, Chrzanowski W, Knowles JC (2008) Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses. Acta Biomater 4:523–534

    Article  Google Scholar 

  • Abou Neel EA, Chrzanowski W, Pickup DM, O’Dell LA, Mordan NJ, Newport RJ, Smith ME, Knowles JC (2009) Structure and properties of strontium-doped phosphate-based glasses. J R Soc Interface 6:435–446

    Article  Google Scholar 

  • Al-Harbi N, Mohammed H, Al-Hadeethi Y, Bakry AS, Umar A, Hussein MA, Abbassy MA, Vaidya KG, Berakdar GA, Mkawi EM, Nune M (2021a) Silica-based bioactive glasses and their applications in hard tissue regeneration: a review. Pharmaceuticals 14:75

    Article  CAS  Google Scholar 

  • Al-Harbi N, Mohammed H, Al-Hadeethi Y, Bakry AS, Umar A, Hussein MA, Abbassy MA, Vaidya KG, Berakdar GA, Mkawi EM, Nune M (2021b) Silica-based bioactive glasses and their applications in hard tissue regeneration: a review. Pharmaceuticals (basel, Switzerland) 14:75

    Article  CAS  Google Scholar 

  • Al Alawi AM, Majoni SW, Falhammar H (2018) Magnesium and human health: perspectives and research directions, Intl J Endocrinol, 2018

  • Alam MA, Asoushe MH, Pourhakkak P, Gritsch L, Alipour A, Mohammadi S (2021) Preparation of bioactive polymer-based composite by different techniques and application in tissue engineering: a review. J Compos Comp 3:194–205

    Google Scholar 

  • Alhashimi RA, Mannocci F, Sauro S (2017) Bioactivity, cytocompatibility and thermal properties of experimental bioglass-reinforced composites as potential root-canal filling materials. J Mech Behav Biomed Mater 69:355–361

    Article  CAS  Google Scholar 

  • Alizadeh-Osgouei M, Li Y, Wen C (2019) A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact Mater 4:22–36

    Google Scholar 

  • Amudha S, Ramana Ramya J, Thanigai Arul K, Deepika A, Sathiamurthi P, Mohana B, Asokan K, Dong C-L, Narayana S, Kalkura. (2020) Enhanced mechanical and biocompatible properties of strontium ions doped mesoporous bioactive glass. Compos B Eng 196:108099

    Article  CAS  Google Scholar 

  • Andersson ÖH, Kangasniemi I (1991) Calcium phosphate formation at the surface of bioactive glass in vitro. J Biomed Mater Res 25:1019–1030

    Article  CAS  Google Scholar 

  • Andersson ÖH, Karlsson KH, Kangasniemi K (1990) Calcium phosphate formation at the surface of bioactive glass in vivo. J Non-Cryst Solids 119:290–296

    Article  CAS  Google Scholar 

  • Anon JB, Jacobs MR, Poole MD, Ambrose PG, Benninger MS, Hadley JA, Craig WA (2004) Antimicrobial treatment guidelines for acute bacterial rhinosinusitis. Otolaryngol Head Neck Surg 130:1–45

    Article  Google Scholar 

  • Arias PP, Tafin UF, Bétrisey B, Vogt S, Trampuz A, Borens O (2015) Activity of bone cement loaded with daptomycin alone or in combination with gentamicin or PEG600 against Staphylococcus epidermidis biofilms. Injury 46:249–253

    Article  Google Scholar 

  • Ayinde WB, Gitari WM, Samie A (2019) Optimization of microwave-assisted synthesis of silver nanoparticle by Citrus paradisi peel and its application against pathogenic water strain. Green Chem Lett Rev 12:225–234

    Article  CAS  Google Scholar 

  • Baig N, Kammakakam I, Falath W (2021) Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances 2:1821–1871

    Article  Google Scholar 

  • Baino F, Fiume E, Miola M, Verné E (2018) Bioactive sol-gel glasses: processing, properties, and applications. Int J Appl Ceram Technol 15:841–860

    Article  CAS  Google Scholar 

  • Balamurugan A, Balossier G, Michel J, Kannan S, Benhayoune H, Rebelo AHS, Ferreira JMF (2007) Sol gel derived SiO2-CaO-MgO-P2O5 bioglass system—preparation and in vitro characterization. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 83:546–553

    CAS  Google Scholar 

  • Balasubramanian P, Salinas AJ, Sanchez-Salcedo S, Detsch R, Vallet-Regi M, Boccaccini AR (2018) Induction of VEGF secretion from bone marrow stromal cell line (ST-2) by the dissolution products of mesoporous silica glass particles containing CuO and SrO. J Non-Cryst Solids 500:217–224

    Article  CAS  Google Scholar 

  • Barczak M (2019) Functionalization of mesoporous silica surface with carboxylic groups by Meldrum’s acid and its application for sorption of proteins. J Porous Mater 26:291–300

    Article  CAS  Google Scholar 

  • Beheshtizadeh N, Azami M, Abbasi H, Farzin A (2021) Applying extrusion-based 3D printing technique accelerates fabricating complex biphasic calcium phosphate-based scaffolds for bone tissue regeneration, J Adv Res

  • Ben-Arfa BAE, Pullar RC (2020) A comparison of bioactive glass scaffolds fabricated by robocasting from powders made by sol–gel and melt-quenching methods. Processes 8:615

    Article  CAS  Google Scholar 

  • Björkenheim R, Strömberg G, Pajarinen J, Ainola M, Uppstu P, Hupa L, Böhling TO, Lindfors NC (2017) Polymer-coated bioactive glass S53P4 increases VEGF and TNF expression in an induced membrane model in vivo. J Mater Sci 52:9055–9065

    Article  Google Scholar 

  • Boccaccini AR, Brauer DS, Hupa L (2016) Bioactive glasses: fundamentals, technology and applications (Royal Society of Chemistry)

  • Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70:1764–1776

    Article  CAS  Google Scholar 

  • Brunello G, Elsayed H, Biasetto L (2019) Bioactive glass and silicate-based ceramic coatings on metallic implants: open challenge or outdated topic? Materials 12:2929

    Article  CAS  Google Scholar 

  • Cai Z, Li Y, Song W, He Y, Li H, Liu X (2021) Anti-inflammatory and prochondrogenic in situ-formed injectable hydrogel crosslinked by strontium-doped bioglass for cartilage regeneration. ACS Appl Mater Interfaces 13:59772–59786

    Article  CAS  Google Scholar 

  • Caldwell KL, Wang J (2015) Cell-based articular cartilage repair: the link between development and regeneration. Osteoarthr Cartil 23:351–362

    Article  CAS  Google Scholar 

  • Calhoun JH, Manring MM, Shirtliff M (2009) Osteomyelitis of the long bones. Semin Plast Surg 23:59–72

    Article  Google Scholar 

  • Cámara-Torres M, Duarte S, Sinha R, Egizabal A, Álvarez N, Bastianini M, Sisani M, Scopece P, Scatto M, Bonetto A, Marcomini A, Sanchez A, Patelli A, Mota C, Moroni L (2021) 3D additive manufactured composite scaffolds with antibiotic-loaded lamellar fillers for bone infection prevention and tissue regeneration. Bioactive Materials 6:1073–1082

    Article  Google Scholar 

  • Cannio M, Bellucci D, Roether JA, Boccaccini DN, Cannillo V (2021) Bioactive glass applications: a literature review of human clinical trials. Materials 14:5440

    Article  CAS  Google Scholar 

  • Castiglioni S, Cazzaniga A, Albisetti W, Maier JAM (2013) Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients 5:3022–3033

    Article  CAS  Google Scholar 

  • Chitra S, Balakumar S (2021) Insight into the im**ement of different sodium precursors on structural, biocompatible, and hemostatic properties of bioactive materials. Mater Sci Eng, C 123:111959

    Article  Google Scholar 

  • Ciesielczyk F, Przybysz M, Zdarta J, Piasecki A, Paukszta D, Jesionowski T (2014) The sol–gel approach as a method of synthesis of xMgO ySiO2 powder with defined physicochemical properties including crystalline structure. J Sol-Gel Sci Technol 71:501–513

    Article  CAS  Google Scholar 

  • Ciosek Ż, Kot K, Kosik-Bogacka D, Łanocha-Arendarczyk N, Rotter I (2021) The effects of calcium, magnesium, phosphorus, fluoride, and lead on bone tissue. Biomolecules 11:506

    Article  CAS  Google Scholar 

  • Conzone SD, Day DE (2009) Preparation and properties of porous microspheres made from borate glass. J Biomed Mater Res, Part A 88A:531–542

    Article  CAS  Google Scholar 

  • Cortez PP, Brito AF, Kapoor S, Correia AF, Atayde LM, Dias-Pereira P, Maurício AC, Afonso A, Goel A, Ferreira JMF (2017) The in vivo performance of an alkali-free bioactive glass for bone grafting, FastOs®BG, assessed with an ovine model. J Biomed Mater Res B Appl Biomater 105:30–38

    Article  CAS  Google Scholar 

  • Crush J, Hussain A, Seah KTM, Khan WS (2021) Bioactive glass: methods for assessing angiogenesis and osteogenesis, Front Cell Dev Biol 1523

  • Dahiya MS, Tomer VK, Duhan S (2019) '1 - Bioactive glass/glass ceramics for dental applications.' in Abdullah M. Asiri, Inamuddin and Ali Mohammad (eds.), Appl Nanocompos Mater Dentist (Woodhead Publishing)

  • Danewalia SS, Singh K (2021) Bioactive glasses and glass-ceramics for hyperthermia treatment of cancer: state-of-art, challenges, and future perspectives. Mater today Bio 10:100100–100200

    Article  CAS  Google Scholar 

  • Das S, Hollister SJ, Flanagan C, Adewunmi A, Bark K, Chen C, Ramaswamy K, Rose D, Widjaja E (2003) Freeform fabrication of nylon‐6 tissue engineering scaffolds, Rapid Prototyp J

  • Day DE, White JE, Brown RF, McMenamin KD (2003) Transformation of borate glasses into biologically useful materials. Glass Technol 44:75–81

    CAS  Google Scholar 

  • Day RM (2005) Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng 11:768–777

    Article  CAS  Google Scholar 

  • De Paula, FJA, Black DM, Rosen CJ (2020) Osteoporosis: basic and clinical aspects, Williams Textbook of Endocrinology. 14th ed. Philadelphia, PA: Elsevier

  • De Witte TM, Fratila-Apachitei LE, Zadpoor AA, Peppas NA (2018) Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regen Biomater 5:197–211

    Article  Google Scholar 

  • Deliormanli AM, Issa SAM, Al-Buriahi MS, Rahman B, Zakaly HMH, Tekin HO (2021) Erbium (III)-and terbium (III)-containing silicate-based bioactive glass powders: physical, structural and nuclear radiation shielding characteristics. Appl Phys A 127:1–18

    Article  Google Scholar 

  • Delpino GP, Borges R, Zambanini T, Joca JFS, Gaubeur I, Santos AC, de Souza, and Juliana Marchi. (2021) Sol-gel-derived 58S bioactive glass containing holmium aiming brachytherapy applications: a dissolution, bioactivity, and cytotoxicity study. Mater Sci Eng, C 119:111595

    Article  CAS  Google Scholar 

  • Deng Z, Lin B, Jiang Z, Huang W, Li J, Zeng X, Wang H, Wang D, Zhang Y (2019) Hypoxia-mimicking cobalt-doped borosilicate bioactive glass scaffolds with enhanced angiogenic and osteogenic capacity for bone regeneration. Int J Biol Sci 15:1113

    Article  CAS  Google Scholar 

  • Deshmukh K, Kovářík T, Křenek T, Docheva D, Stich T, Pola J (2020) Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review. RSC Adv 10:33782–33835

    Article  CAS  Google Scholar 

  • Detsch R, Guillon O, Wondraczek L, Boccaccini AR (2012) Initial attatchment of rMSC and MG-63 cells on patterned Bioglass® substrates. Adv Eng Mater 14:B38–B44

    Article  Google Scholar 

  • Dietrich E, Oudadesse H, Lucas-Girot A, Mami M (2009) In vitro bioactivity of melt-derived glass 46S6 doped with magnesium. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 88:1087–1096

    Article  Google Scholar 

  • Dimitriadis K, Tulyaganov DU, Agathopoulos S (2021) Development of novel alumina-containing bioactive glass-ceramics in the CaO-MgO-SiO2 system as candidates for dental implant applications. J Eur Ceram Soc 41:929–940

    Article  CAS  Google Scholar 

  • Döhler F, Groh D, Chiba S, Bierlich J, Kobelke J, Brauer DS (2016) Bioactive glasses with improved processing. Part 2. Viscosity and fibre drawing. J Non-Cryst Solids 432:130–136

    Article  Google Scholar 

  • Dong X (2018) Current strategies for brain drug delivery. Theranostics 8:1481–1493

    Article  CAS  Google Scholar 

  • Dridi A, Riahi KZ, Somrani S (2021) Mechanism of apatite formation on a poorly crystallized calcium phosphate in a simulated body fluid (SBF) at 37 C. J Phys Chem Solids 156:110122

    Article  CAS  Google Scholar 

  • El-Meliegy E, Van Noort R (2011) Glasses and glass ceramics for medical applications (Springer science & business media)

  • El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR (2017) Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater 62:1–28

    Article  CAS  Google Scholar 

  • Erol Taygun M, Boccaccini AR (2018) '10 - Nanoscaled bioactive glass particles and nanofibers.' in Heimo Ylänen (ed.), Bioactive Glasses (Second Edition) (Woodhead Publishing)

  • Essien ER, Atasie VN, Udobang EU (2016) Microwave energy-assisted formation of bioactive CaO–MgO–SiO2 ternary glass from bio-wastes. Bull Mater Sci 39:989–995

    Article  CAS  Google Scholar 

  • Fan Y, Yang P, Huang S, Jiang J, Lian H, Lin J (2009) Luminescent and mesoporous europium-doped bioactive glasses (MBG) as a drug carrier. J Phys Chem C 113:7826–7830

    Article  CAS  Google Scholar 

  • Fernandes HR, Gaddam A, Rebelo A, Brazete D, Stan GE, Ferreira JMF (2018a) Bioactive glasses and glass-ceramics for healthcare applications in bone regeneration and tissue engineering. Materials 11:2530

    Article  CAS  Google Scholar 

  • Fernandes HR, Gaddam A, Rebelo A, Brazete D, Stan GE, Ferreira JMF (2018b) Bioactive glasses and glass-ceramics for healthcare applications in bone regeneration and tissue engineering. Materials (basel, Switzerland) 11:2530

    Article  CAS  Google Scholar 

  • Ferrando A, Part J, Baeza J (2017) Treatment of Cavitary bone defects in chronic osteomyelitis: biogactive glass S53P4 vs. calcium sulphate antibiotic beads. J Bone Jt Infect 2:194–201

    Article  Google Scholar 

  • Fiume E, Barberi J, Verné E, Baino F (2018) Bioactive glasses: from parent 45S5 composition to scaffold-assisted tissue-healing therapies, J Funct Biomater, 9

  • Fiume E, Magnaterra G, Rahdar A, Verné E, Baino F (2021) Hydroxyapatite for biomedical applications: a short overview. Ceramics 4:542–563

    Article  CAS  Google Scholar 

  • Fiume E, Migneco C, Verné E, Baino F (2020) Comparison between bioactive sol-gel and melt-derived glasses/glass-ceramics based on the multicomponent SiO2–P2O5–CaO–MgO–Na2O–K2O system. Materials 13:540

    Article  CAS  Google Scholar 

  • Foroutan F, McGuire J, Gupta P, Nikolaou A, Kyffin BA, Kelly NL, Hanna JV, Gutierrez-Merino J, Knowles JC, Baek S-Y, Velliou E, Carta D (2019) Antibacterial copper-doped calcium phosphate glasses for bone tissue regeneration. ACS Biomater Sci Eng 5:6054–6062

    Article  CAS  Google Scholar 

  • Fraile-Martínez O, García-Montero C, Coca A, Álvarez-Mon MA, Monserrat J, Gómez-Lahoz AM, Coca S, Álvarez-Mon M, Acero J, Bujan J, García-Honduvilla N, Asúnsolo Á, Ortega MA (2021) Applications of polymeric composites in bone tissue engineering and jawbone regeneration, Polymers (Basel), 13

  • Gao J, Feng L, Chen B, Biao Fu, Zhu M (2022) The role of rare earth elements in bone tissue engineering scaffolds - a review. Compos B Eng 235:109758

    Article  CAS  Google Scholar 

  • Geurts J, van Vugt T, Thijssen E, Arts JJ (2019) Cost-effectiveness study of one-stage treatment of chronic osteomyelitis with bioactive glass S53P4. Materials 12:3209

    Article  CAS  Google Scholar 

  • Gmeiner R, Deisinger U, Schönherr J, Lechner B, Detsch R, Boccaccini AR, Stampfl J (2015a) Additive manufacturing of bioactive glasses and silicate bioceramics. J Ceram Sci Technol 6:75–86

    Google Scholar 

  • Gmeiner R, Deisinger U, Schönherr J, Lechner B, Detsch R, Boccaccini A, Stampfl J (2015b) Additive manufacturing of bioactive glasses and silicate bioceramics. J Ceram Sci Technol 6:75–86

    Google Scholar 

  • Gmeiner R, Mitteramskogler G, Stampfl J, Boccaccini AR (2015c) Stereolithographic ceramic manufacturing of high strength bioactive glass. Int J Appl Ceram Technol 12:38–45

    Article  CAS  Google Scholar 

  • Goudarzi Z, Parvin N, Sharifianjazi F (2019) Formation of hydroxyapatite on surface of SiO2– P2O5–CaO–SrO–ZnO bioactive glass synthesized through sol-gel route. Ceram Int 45:19323–19330

    Article  CAS  Google Scholar 

  • Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, Guo Q, Zhu C, Yu L, Wang H, Zhao Z, Jia L, Li J, Yu Y, Zhang W, Chu G, Chen S, Li B (2020) Tissue engineering and regenerative medicine: achievements, future, and sustainability in Asia, Front Bioeng Biotechnol, 8

  • He Y, Lu F (2016) Development of synthetic and natural materials for tissue engineering applications using adipose stem cells, Stem Cells Intl, 2016

  • Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017

    Article  CAS  Google Scholar 

  • Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5:117–141

    Article  Google Scholar 

  • Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Article  CAS  Google Scholar 

  • Hench LL, Paschall HA (1973) Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res 7:25–42

    Article  CAS  Google Scholar 

  • Hench, Larry L, Splinter R J_, Allen WC, Greenlee TK (1971b) 'Bonding mechanisms at the interface of ceramic prosthetic materials', J Biomed Mater Res, 5: 117-41

  • Hench LL, Jones JR (2015) Bioactive glasses: frontiers and challenges. Front Bioeng Biotechnol 3:194–294

    Article  Google Scholar 

  • Hmood F, Schmidt F, Goerke O, Günster J (2019) Investigation of chemically modified ICIE16 bioactive glass, Part II, J Ceram Sci Technol, 11: 1-9

  • Höland W, Wange P, Naumann K, Vogel J, Carl G, Jana C, Götz W (1991) Control of phase formation processes in glass-ceramics for medicine and technology. J Non-Cryst Solids 129:152–162

    Article  Google Scholar 

  • Hong W, Guo F, Hu L, Wang X, **ng C, Tan Y, Zhao X, **ao P (2019) A hierarchically porous bioactive glass-ceramic microsphere with enhanced bioactivity for bone tissue engineering, Ceram Intl, 45

  • Hoppe A, Boccaccini AR (2015) Biological impact of bioactive glasses and their dissolution products. Front Oral Biol 17:22–32

    Article  Google Scholar 

  • Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774

    Article  CAS  Google Scholar 

  • Hoppe A, Mouriño V, Boccaccini AR (2013) Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomaterials Science 1:254–256

    Article  CAS  Google Scholar 

  • Hossain KM, Zakir UP, Kennedy AR, Macri-Pellizzeri L, Sottile V, Grant DM, Scammell BE, Ahmed I (2018) Porous calcium phosphate glass microspheres for orthobiologic applications. Acta Biomater 72:396–406

    Article  CAS  Google Scholar 

  • Huang C-L, Wei Fang I, Chen H, Hung T-Y (2018) Manufacture and biomimetic mineral deposition of nanoscale bioactive glasses with mesoporous structures using sol-gel methods. Ceram Int 44:17224–17229

    Article  CAS  Google Scholar 

  • Hurtel-Lemaire AS, Mentaverri R, Caudrillier A, Cournarie F, Wattel A, Kamel S, Terwilliger EF, Brown EM, Brazier M (2009) The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis: new insights into the associated signaling pathways. J Biol Chem 284:575–584

    Article  CAS  Google Scholar 

  • Towhidul IM, Felfel RM, Abou EA, Neel DM, Grant IA, Zakir KM, Hossain. (2017) Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: a review. J Tissue Eng 8:2041731417719170–70

    Google Scholar 

  • Jones JR, Gentleman E, Polak J (2007) Bioactive glass scaffolds for bone regeneration. Elements 3:393–399

    Article  CAS  Google Scholar 

  • Jossen R, Mueller R, Pratsinis SE, Watson M, Kamal M, Akhtar. (2005) Morphology and composition of spray-flame-made yttria-stabilized zirconia nanoparticles. Nanotechnology 16:S609

    Article  Google Scholar 

  • Joy-anne, NO, Akande O, Ecker M (2021) Incorporation of novel elements in bioactive glass compositions to enhance implant performance. in, Current Concepts in Dental Implantology-From Science to Clinical Research (IntechOpen)

  • Karadjian M, Essers C, Tsitlakidis S, Reible B, Moghaddam A, Boccaccini AR, Westhauser F (2019) Biological properties of calcium phosphate bioactive glass composite bone substitutes: current experimental evidence. Int J Mol Sci 20:305

    Article  Google Scholar 

  • Kargozar S, Hamzehlou S, Baino F (2017a) Potential of bioactive glasses for cardiac and pulmonary tissue engineering, Materials (Basel, Switzerland), 10

  • Kargozar S, Hashemian SJ, Soleimani M, Milan PB, Askari M, Khalaj V, Samadikuchaksaraie A, Hamzehlou S, Katebi AR, Latifi N (2017b) Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7. Mater Sci Eng, C 75:688–698

    Article  CAS  Google Scholar 

  • Kargozar S, Montazerian M, Fiume E, Baino F (2019a) 'Multiple and promising applications of strontium (Sr)-containing bioactive glasses in bone tissue engineering', Front Bioeng Biotechnol, 7

  • Kargozar S, Montazerian M, Fiume E, Baino F (2019b) Multiple and promising applications of strontium (Sr)-containing bioactive glasses in bone tissue engineering. Front Bioeng Biotechnol 7:161–261

    Article  Google Scholar 

  • Kargozar S, Mozafari M, Hill RG, Milan PB, Joghataei MT, Hamzehlou S, Baino F (2018) Synergistic combination of bioactive glasses and polymers for enhanced bone tissue regeneration. Materials Today: Proceedings 5:15532–15539

    CAS  Google Scholar 

  • Karim BFA, Gillam DG (2013) The efficacy of strontium and potassium toothpastes in treating dentine hypersensitivity: a systematic review. Intl J Dentist 2013:573258–573358

    Article  CAS  Google Scholar 

  • Kaur G, Pickrell G, Sriranganathan N, Kumar V, Homa D (2016) Review and the state of the art: sol–gel and melt quenched bioactive glasses for tissue engineering. J Biomed Mater Res B Appl Biomater 104:1248–1275

    Article  CAS  Google Scholar 

  • Khalid H, Suhaib F, Zahid S, Ahmed S, Jamal A, Kaleem M, Khan AS (2018) Microwave-assisted synthesis and in vitro osteogenic analysis of novel bioactive glass fibers for biomedical and dental applications. Biomed Mater 14:015005

    Article  Google Scholar 

  • Khan HM, Iqbal T, Mujtaba MA, Soudagar MEM, Veza I, Rizwanul Fattah IM (2021) Microwave assisted biodiesel production using heterogeneous catalysts, Energies, 14: 8135

  • Kheradmandfard M, Mahdavi K, Kharazi AZ, Kashani-Bozorg SF, Kim D-E (2020) In vitro study of a novel multi-substituted hydroxyapatite nanopowder synthesized by an ultra-fast, efficient and green microwave-assisted method. Mater Sci Eng, C 117:111310

    Article  CAS  Google Scholar 

  • Kokubo T (2008) Bioceramics and their clinical applications (Elsevier)

  • Kołodziejska B, Stępień N, Kolmas J (2021) The influence of strontium on bone tissue metabolism and its application in osteoporosis treatment. Int J Mol Sci 22:6564

    Article  Google Scholar 

  • Leppäranta O, Vaahtio M, Peltola T, Zhang Di, Hupa L, Hupa M, Ylänen H, Salonen JI, Viljanen MK, Eerola E (2008) Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. J Mater Sci - Mater Med 19:547–551

    Article  Google Scholar 

  • Leu A, Leach JK (2008) Proangiogenic potential of a collagen/bioactive glass substrate, Pharmaceut Res, 25: 1222-29

  • Li B, Webster TJ (2018) Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopedic infections. J Orthopaedic Res Official Public Orthopaedic Res Soc 36:22–32

    Article  Google Scholar 

  • Li Q, **ng M, Chang L, Ma L, Chen Z, Qiu J, Jianding Yu, Chang J (2019a) Upconversion luminescence Ca–Mg–Si bioactive glasses synthesized using the containerless processing technique. Front Mater Sci 13:399–409

    Article  Google Scholar 

  • Li W (2015) 45S5 bioactive glass-based composite scaffolds with polymer coatings for bone tissue engineering therapeutics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

  • Li Z, Zhao B, Shao J, Liu S (2019b) Deformation behavior and mechanical properties of periodic topological Ti structures fabricated by superplastic forming/diffusion bonding. Intl J Lightweight Mater Manuf 2:1–30

    Google Scholar 

  • Liu Yu, Zhou G, Cao Y (2017) Recent progress in cartilage tissue engineering—our experience and future directions. Engineering 3:28–35

    Article  CAS  Google Scholar 

  • Loboda A, Jazwa A, Wegiel B, Jozkowicz A, Dulak J (2005) 'Heme oxygenase-1-dependent and -independent regulation of angiogenic genes expression: effect of cobalt protoporphyrin and cobalt chloride on VEGF and IL-8 synthesis in human microvascular endothelial cells', Cell Mol Biol (Noisy-le-grand), 51: 347–55

  • Lourenço AH, Torres AL, Vasconcelos DP, Ribeiro-Machado C, Barbosa JN, Barbosa MA, Barrias CC, Ribeiro CC (2019) Osteogenic, anti-osteoclastogenic and immunomodulatory properties of a strontium-releasing hybrid scaffold for bone repair. Mater Sci Eng, C 99:1289–1303

    Article  Google Scholar 

  • Lu H, Guo X, Liu Y, Gong X (2015). Effect of particle size on flow mode and flow characteristics of pulverized coal, KONA Powder Particle J 2015002

  • Lu K, Hiser M, William Wu (2009) Effect of particle size on three dimensional printed mesh structures. Powder Technol 192:178–183

    Article  CAS  Google Scholar 

  • Lukowiak, Anna, Jonathan Lao, Josephine Lacroixd, and Jean-Marie Nedeleca. Bioactive glass nanoparticles through sol-gel chemistry

  • Lv J, Wang N, Zhu Y, Luo Q, Li Y, Li J (2021) A meta-analysis and systematic review of holmium laser treatment of bladder stones. Trans Androl Urol 10:3465

    Article  Google Scholar 

  • Ma J, Chen CZ, Wang DG, Hu JH (2011) Synthesis, characterization and in vitro bioactivity of magnesium-doped sol–gel glass and glass-ceramics. Ceram Int 37:1637–1644

    Article  CAS  Google Scholar 

  • Madhan M, Prabhakaran G (2019) Microwave versus conventional sintering: microstructure and mechanical properties of Al2O3–SiC ceramic composites. Boletín De La Sociedad Española De Cerámica y Vidrio 58:14–22

    Article  CAS  Google Scholar 

  • Manoochehri H, Ghorbani M, Moghaddam MM, Nourani MR, Makvandi P, Sharifi E (2022) Strontium doped bioglass incorporated hydrogel-based scaffold for amplified bone tissue regeneration. Sci Rep 12:1–18

    Article  Google Scholar 

  • Massera J, Hupa L, Hupa M (2012) Influence of the partial substitution of CaO with MgO on the thermal properties and in vitro reactivity of the bioactive glass S53P4. J Non-Cryst Solids 358:2701–2707

    Article  CAS  Google Scholar 

  • Matinfar M, Mesgar A, Mohammadi Z (2019) Evaluation of physicochemical, mechanical and biological properties of chitosan/carboxymethyl cellulose reinforced with multiphasic calcium phosphate whisker-like fibers for bone tissue engineering, Mater Sci Eng C, 100

  • Matlinska, Maria A, Michelle Ha, Bryden Hughton, Anton O Oliynyk, Abishek K Iyer, Guy M Bernard, Gareth Lambkin, Mason C Lawrence, Michael J Katz, and Arthur Mar. 2019. 'Alkaline earth metal–organic frameworks with tailorable ion release: a path for supporting biomineralization', ACS Applied Materials & Interfaces, 11: 32739-45

  • McAndrew J, Efrimescu C, Sheehan E, Niall D (2013) Through the looking glass; bioactive glass S53P4 (BonAlive®) in the treatment of chronic osteomyelitis. Ir J Med Sci 182:509–511

    Article  CAS  Google Scholar 

  • Mehrabi T, Mesgar AS, Mohammadi Z (2020) Bioactive glasses: a promising therapeutic ion release strategy for enhancing wound healing. ACS Biomater Sci Eng 6:5399–5430

    Article  CAS  Google Scholar 

  • Miola M, Brovarone CV, Maina G, Rossi F, Bergandi L, Ghigo D, Saracino S, Maggiora M, Canuto RA, Muzio G, Vernè E (2014) In vitro study of manganese-doped bioactive glasses for bone regeneration. Mater Sci Eng C Mater Biol Appl 38:107–118

    Article  CAS  Google Scholar 

  • Mitteramskogler G, Gmeiner R, Felzmann R, Gruber S, Hofstetter C, Stampfl J, Ebert J, Wachter W, Laubersheimer J (2014) Light curing strategies for lithography-based additive manufacturing of customized ceramics. Addit Manuf 1:110–118

    Google Scholar 

  • Moghanian A, Zohourfazeli M, Tajer MHM (2020) The effect of zirconium content on in vitro bioactivity, biological behavior and antibacterial activity of sol-gel derived 58S bioactive glass. J Non-Cryst Solids 546:120262

    Article  CAS  Google Scholar 

  • Mohn D, Zehnder M, Imfeld T, Stark WJ (2010) Radio-opaque nanosized bioactive glass for potential root canal application: evaluation of radiopacity, bioactivity and alkaline capacity. Int Endod J 43:210–217

    Article  CAS  Google Scholar 

  • Mostafaei A, Elliott AM, Barnes JE, Li F, Tan W, Cramer CL, Nandwana P, Chmielus M (2021) Binder jet 3D printing—process parameters, materials, properties, modeling, and challenges. Prog Mater Sci 119:100707

    Article  CAS  Google Scholar 

  • Mouriño V, Vidotto R, Cattalini JP, Boccaccini AR (2019) Enhancing biological activity of bioactive glass scaffolds by inorganic ion delivery for bone tissue engineering. Curr Opin Biomed Eng 10:23–34

    Article  Google Scholar 

  • Mouriño V, Cattalini JP, Boccaccini AR (2012) Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface 9:401–419

    Article  Google Scholar 

  • Mousavi M, Hashemi A, Arjmand O, Amani AM, Babapoor A, Fateh MA, Fateh H, Mojoudi F, Esmaeili H, Jahandideh S (2018) Erythrosine adsorption from aqueous solution via decorated graphene oxide with magnetic iron oxide nano particles: kinetic and equilibrium studies. Acta Chim Slov 65:882–894

    Article  CAS  Google Scholar 

  • Munukka E, Leppäranta O, Korkeamäki M, Vaahtio M, Peltola T, Zhang Di, Hupa L, Ylänen H, Salonen JI, Viljanen MK (2008) Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. J Mater Sci - Mater Med 19:27–32

    Article  CAS  Google Scholar 

  • Mussatto A, Groarke R, O’Neill A, Obeidi MA, Delaure Y, Brabazon D (2021) Influences of powder morphology and spreading parameters on the powder bed topography uniformity in powder bed fusion metal additive manufacturing. Addit Manuf 38:101807

    CAS  Google Scholar 

  • Nandi SK, Mahato A, Kundu B, Mukherjee P (2016) Doped bioactive glass materials in bone regeneration. Adv Tech Bone Reg 13:276–327

    Google Scholar 

  • Naresh P, Narsimlu N, Ch Srinivas Md, Shareefuddin, and K. Siva Kumar. (2020) Ag2O doped bioactive glasses: an investigation on the antibacterial, optical, structural and impedance studies. J Non-Cryst Solids 549:120361

    Article  CAS  Google Scholar 

  • Naskar N, Lahiri S (2021) Theranostic terbium radioisotopes: challenges in production for clinical application. Front Med 8:675014

    Article  Google Scholar 

  • Neacsu IA, Stoica AE, Vasile BS, Andronescu E (2019) Luminescent hydroxyapatite doped with rare earth elements for biomedical applications. Nanomaterials 9:239

    Article  CAS  Google Scholar 

  • Neščáková Z, Zheng K, Liverani L, Nawaz Q, Galusková D, Kaňková H, Michálek M, Galusek D, Boccaccini AR (2019) Multifunctional zinc ion doped sol – gel derived mesoporous bioactive glass nanoparticles for biomedical applications. Bioactive Materials 4:312–321

    Article  Google Scholar 

  • Neto, A. S., and J. M. F. Ferreira. 2018. 'Synthetic and marine-derived porous scaffolds for bone tissue engineering', Materials (Basel, Switzerland), 11.

  • Nikolova MP, Chavali MS (2019) Recent advances in biomaterials for 3D scaffolds: a review. Bioactive Materials 4:271–292

    Article  Google Scholar 

  • Dehkordi N, Azar FM, Babaheydari MC, Dehkordi SR (2019) Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther 10:1–20

    Google Scholar 

  • Novajra G, Vitale-Brovarone C, Knowles JC, Maina G, Aina V, Ghigo D, Bergandi L (2011) Effects of TiO2-containing phosphate glasses on solubility and in vitro biocompatibility. J Biomed Mater Res A 99:295–306

    Article  CAS  Google Scholar 

  • Oliveira JM, Correia RN, Fernandes MH (2002) Effects of Si speciation on the in vitro bioactivity of glasses. Biomaterials 23:371–379

    Article  CAS  Google Scholar 

  • Özarslan AC, Elalmis YB, Yücel S (2021) Production of biosilica based bioactive glass-alginate composite putty as bone support material, and evaluation of in vitro properties; bioactivity and cytotoxicity behavior. J Non-Cryst Solids 561:120755

    Article  Google Scholar 

  • Pajares-Chamorro N, Chatzistavrou X (2020) Bioactive glass nanoparticles for tissue regeneration. ACS Omega 5:12716–12726

    Article  CAS  Google Scholar 

  • Palma V, Barba D, Cortese M, Martino M, Renda S, Meloni E (2020) Microwaves and heterogeneous catalysis: a review on selected catalytic processes. Catalysts 10:246

    Article  CAS  Google Scholar 

  • Pantulap U, Arango-Ospina M, Boccaccini AR (2022) Bioactive glasses incorporating less-common ions to improve biological and physical properties. J Mater Sci - Mater Med 33:1–41

    Article  Google Scholar 

  • Pătcaş L, Vanea E, Tămăşan M, Eniu D, Simon V (2014) Nanos tructural changes induced by thermal treatment of calcium silicate glasses containing dysprosium and iron, Optoelectronics and Advanced Materials-Rapid Communications, 8: 989-92

  • Peitl O, Zanotto ED, Serbena FC, Hench LL (2012) Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics. Acta Biomater 8:321–332

    Article  CAS  Google Scholar 

  • Peng S, Zhou G, Luk KDK, Cheung KMC, Li Z, Lam WM, Zhou Z, Lu WW (2009) Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell Physiol Biochem 23:165–174

    Article  CAS  Google Scholar 

  • Pilchova I, Klacanova K, Tatarkova Z, Kaplan P, Racay P (2017) The involvement of Mg(2+) in regulation of cellular and mitochondrial functions. Oxid Med Cell Longev 2017:6797460–6797560

    Article  Google Scholar 

  • Poniedziałek B, Rzymski P, Pięt M, Niedzielski P, Mleczek M, Wilczak M, Rzymski P (2017) Rare-earth elements in human colostrum milk. Environ Sci Pollut Res 24:26148–26154

    Article  Google Scholar 

  • Purcar V, Rădiţoiu V, Nichita C, Bălan A, Rădiţoiu A, Căprărescu S, Raduly FM, Manea R, Şomoghi R, Nicolae C-A (2021) Preparation and characterization of silica nanoparticles and of silica-gentamicin nanostructured solution obtained by microwave-assisted synthesis. Materials 14:2086

    Article  CAS  Google Scholar 

  • Qasem NAA, Mohammed RH, Lawal DU (2021) Removal of heavy metal ions from wastewater: a comprehensive and critical review, npj Clean Water, 4: 36

  • Rahaman MN, Mao JJ (2005) Stem cell-based composite tissue constructs for regenerative medicine. Biotechnol Bioeng 91:261–284

    Article  CAS  Google Scholar 

  • Rahaman MN, Day DE, Sonny Bal B, Qiang Fu, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373

    Article  CAS  Google Scholar 

  • Rahman NA, Abdul KA, Matori MH, Zaid M, Zainuddin N, Aziz SA, Khiri MZA, Jalil RA, Jusoh WNW (2019) Fabrication of alumino-silicate-fluoride based bioglass derived from waste clam shell and soda lime silica glasses. Results in Physics 12:743–747

    Article  Google Scholar 

  • Raina DB, Liu Y, Otto LP, Jacobson KE, Tanner MT, Lidgren L (2020) Bone mineral as a drug-seeking moiety and a waste dump. Bone & Joint Research 9:709–718

    Article  Google Scholar 

  • Ramsheh MR, Behnamghader A, Khanlarkhani A (2021) Sol-gel synthesis, in vitro behavior, and human bone marrow-derived mesenchymal stem cell differentiation and proliferation of bioactive glass 58S. Iran Biomed J 25:180

    Article  Google Scholar 

  • Ratner, Buddy D, Allan S Hoffman, Frederick J Schoen, and Jack E Lemons. 2004. 'Biomaterials science: an introduction to materials in medicine', San Diego, California: 162–4.

  • Rheinheimer W, Hoffmann MJ (2015) Non-Arrhenius behavior of grain growth in strontium titanate: new evidence for a structural transition of grain boundaries. Scr Mater 101:68–71

    Article  CAS  Google Scholar 

  • Rimondini L, Nicoli-Aldini N, Fini M, Guzzardella G, Tschon M, Giardino R (2005) In vivo experimental study on bone regeneration in critical bone defects using an injectable biodegradable PLA/PGA copolymer. Oral Surg Oral Med Oral Pathol Oral Radiol and Endodontol 99:148–154

    Article  Google Scholar 

  • Rizwan M, Hamdi M, Basirun WJ (2017) Bioglass® 45S5-based composites for bone tissue engineering and functional applications. J Biomed Mater Res, Part A 105:3197–3223

    Article  CAS  Google Scholar 

  • Rodrigues M, Kosaric N, Bonham CA, Gurtner GC (2019) Wound healing: a cellular perspective. Physiol Rev 99:665–706

    Article  CAS  Google Scholar 

  • Ronga M, Ferraro S, Fagetti A, Cherubino M, Valdatta L, Cherubino P (2014) Masquelet technique for the treatment of a severe acute tibial bone loss. Injury 45:S111–S115

    Article  Google Scholar 

  • Rostamizadeh S, Amani AM, Mahdavinia GH, Shadjou N (2009) Silica supported ammonium dihydrogen phosphate (NH4H2PO4/SiO2): a mild, reusable and highly efficient heterogeneous catalyst for the synthesis of 14-aryl-14-H-dibenzo [a, j] xanthenes. Chin Chem Lett 20:779–783

    Article  CAS  Google Scholar 

  • Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM (2008) Aqueous NaHSO4 catalyzed regioselective and versatile synthesis of 2-thiazolamines. Monatshefte Für Chemie-Chemical Monthly 139:1241–1245

    Article  CAS  Google Scholar 

  • Ruiz-Clavijo A, Hurt AP, Kotha AK, Coleman NJ (2019) Effect of calcium precursor on the bioactivity and biocompatibility of sol-gel-derived glasses. J Function Biomater 10:13

    Article  CAS  Google Scholar 

  • Saberi A, Behnamghader A, Aghabarari B, Yousefi A, Majda D, Huerta MVM, Mozafari M (2022) 3D direct printing of composite bone scaffolds containing polylactic acid and spray dried mesoporous bioactive glass-ceramic microparticles. Int J Biol Macromol 207:9–22

    Article  CAS  Google Scholar 

  • Scheithauer U, Schwarzer E, Moritz T, Michaelis A (2018) Additive manufacturing of ceramic heat exchanger: opportunities and limits of the lithography-based ceramic manufacturing (LCM). J Mater Eng Perform 27:14–20

    Article  CAS  Google Scholar 

  • Schumacher M, Habibović P, van Rijt S (2022) Peptide-modified nano-bioactive glass for targeted immobilization of native VEGF. ACS Appl Mater Interfaces 14:4959–4968

    Article  CAS  Google Scholar 

  • Schwarzer E, Götz M, Markova D, Stafford D, Scheithauer U, Moritz T (2017) Lithography-based ceramic manufacturing (LCM)–viscosity and cleaning as two quality influencing steps in the process chain of printing green parts. J Eur Ceram Soc 37:5329–5338

    Article  CAS  Google Scholar 

  • Senapati S, Mahanta AK, Kumar S, Maiti P (2018) Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 3:7–7

    Article  Google Scholar 

  • Sergi R, Bellucci D, Cannillo V (2020) A review of bioactive glass/natural polymer composites: state of the art. Materials 13:5560

    Article  CAS  Google Scholar 

  • Sharifianjazi F, Moradi M, Abouchenari A, Pakseresht AH, Esmaeilkhanian A, Shokouhimehr M, Asl MS (2020) Effects of Sr and Mg dopants on biological and mechanical properties of SiO2–CaO–P2O5 bioactive glass. Ceram Int 46:22674–22682

    Article  CAS  Google Scholar 

  • Sharifianjazi F, Parvin N, Tahriri M (2017) Formation of apatite nano-needles on novel gel derived SiO2-P2O5-CaO-SrO-Ag2O bioactive glasses. Ceram Int 43:15214–15220

    Article  CAS  Google Scholar 

  • Siddiqui HA, Pickering KL, Mucalo MR (2018) A review on the use of hydroxyapatite-carbonaceous structure composites in bone replacement materials for strengthening purposes. Materials 11:1813

    Article  Google Scholar 

  • Skallevold HE, Rokaya D, Khurshid Z, Zafar MS (2019) Bioactive glass applications in dentistry. Int J Mol Sci 20:5960

    Article  CAS  Google Scholar 

  • Snoddy B, Jayasuriya AC (2016) The use of nanomaterials to treat bone infections. Mater Sci Eng C Mater Biol Appl 67:822–833

    Article  CAS  Google Scholar 

  • Somoza RA, Welter JF, Correa D, Caplan AI (2014) Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng Part B Rev 20:596–608

    Article  Google Scholar 

  • Sprio S, Dapporto M, Preti L, Mazzoni E, Iaquinta MR, Martini F, Tognon M, Pugno NM, Restivo E, Visai L (2020) Enhancement of the biological and mechanical performances of sintered hydroxyapatite by multiple ions do**. Front Mater 7:224

    Article  Google Scholar 

  • Stoor P, Söderling E, Salonen JI (1998) Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontol Scand 56:161–165

    Article  CAS  Google Scholar 

  • Strobel LA, Hild N, Mohn D, Stark WJ, Hoppe A, Gbureck U, Horch RE, Kneser U, Boccaccini AR (2013) Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells. J Nanopart Res 15:1780

    Article  Google Scholar 

  • Sun J, Wang W, Yue Q (2016) Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials 9:231

    Article  Google Scholar 

  • Sun R, Zhang J, Whiley RA, Sukhorukov GB, Cattell MJ (2021) Synthesis, drug release, and antibacterial properties of novel dendritic CHX-SrCl(2) and CHX-ZnCl(2) particles. Pharmaceutics 13:1799

    Article  CAS  Google Scholar 

  • Tamjid E, Bagheri R, Vossoughi M, Simchi A (2011) Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites. Mater Sci Eng, C 31:1526–1533

    Article  CAS  Google Scholar 

  • Tarabeux J, Pateloup V, Michaud P, Chartier T (2018) Development of a numerical simulation model for predicting the curing of ceramic systems in the stereolithography process. J Eur Ceram Soc 38:4089–4098

    Article  CAS  Google Scholar 

  • Tavoni M, Dapporto M, Tampieri A, Sprio S (2021) Bioactive calcium phosphate-based composites for bone regeneration. J Compos Sci 5:227

    Article  CAS  Google Scholar 

  • Tesavibul P, Felzmann R, Gruber S, Liska R, Thompson I, Boccaccini AR, Stampfl J (2012) Processing of 45S5 Bioglass® by lithography-based additive manufacturing. Mater Lett 74:81–84

    Article  CAS  Google Scholar 

  • Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630

    Article  CAS  Google Scholar 

  • Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B (2020) Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 12:735

    Article  CAS  Google Scholar 

  • Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W (2018) 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials 3:278–314

    Article  Google Scholar 

  • Ullah I, Gloria A, Zhang W, Ullah MW, Bin Wu, Li W, Domingos M, Zhang X (2019) Synthesis and characterization of sintered Sr/Fe-modified hydroxyapatite bioceramics for bone tissue engineering applications. ACS Biomater Sci Eng 6:375–388

    Article  Google Scholar 

  • Vafa E, Bazargan-Lari R (2021) Bovine serum albumin protected gold nanozymes as a novel anti-cancer nanodrug for acute T-type lymphoblastic leukemia treatment via effect on the expression of anti-apoptotic genes. Appl Biol Chem 64:86

    Article  CAS  Google Scholar 

  • Vafa E, Bazargan-Lari R, Bahrololoom ME (2021a) Electrophoretic deposition of polyvinyl alcohol/natural chitosan/bioactive glass composite coatings on 316L stainless steel for biomedical application. Prog Org Coat 151:106059

    Article  CAS  Google Scholar 

  • Vafa E, Bazargan-Lari R, Bahrololoom ME (2021b) Synthesis of 45S5 bioactive glass-ceramic using the sol-gel method, catalyzed by low concentration acetic acid extracted from homemade vinegar. J Market Res 10:1427–1436

    CAS  Google Scholar 

  • Välimäki V-V, Aro HT (2006) Molecular basis for action of bioactive glasses as bone graft substitute. Scandinavian J Surg 95:95–102

    Article  Google Scholar 

  • Vallet-Regi M, Salinas AJ, Roman J, Gil M (1999) Effect of magnesium content on the in vitro bioactivity of CaO-MgO-SiO 2-P 2 O 5 sol-gel glasses. J Mater Chem 9:515–518

    Article  CAS  Google Scholar 

  • Vallet-Regi M (2014) Bio-ceramics with clinical applications (John Wiley & Sons)

  • van Gestel NA, Geurts J, Hulsen DJ, van Rietbergen B, Hofmann S, Arts JJ (2015) Clinical applications of S53P4 bioactive glass in bone healing and osteomyelitic treatment: a literature review. Biomed Res Int 2015:684826

    Google Scholar 

  • Vergnol G, Ginsac N, Rivory P, Meille S, Chenal J-M, Balvay S, Chevalier J, Hartmann DJ (2016) In vitro and in vivo evaluation of a polylactic acid-bioactive glass composite for bone fixation devices. J Biomed Mater Res B Appl Biomater 104:180–191

    Article  CAS  Google Scholar 

  • Vock S, Klöden B, Kirchner A, Weißgärber T, Kieback B (2019) Powders for powder bed fusion: a review. Progress in Additive Manufacturing 4:383–397

    Article  Google Scholar 

  • Wang C, Shen H, Tian Ye, **e Y, Li A, Ji L, Niu Z, Decheng Wu, Qiu D (2014) Bioactive nanoparticle–gelatin composite scaffold with mechanical performance comparable to cancellous bones. ACS Appl Mater Interfaces 6:13061–13068

    Article  CAS  Google Scholar 

  • Wang W, Yeung KWK (2017) Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioactive Materials 2:224–247

    Article  Google Scholar 

  • Wang, **ang, Ying Zhang, Chuan Lin, and Wenxing Zhong. 2017a. 'Sol-gel derived terbium-containing mesoporous bioactive glasses nanospheres: in vitro hydroxyapatite formation and drug delivery', Colloids and surfaces B: Biointerfaces, 160.

  • Wang X, Zhang Y, Lin C, Zhong W (2017b) Sol-gel derived terbium-containing mesoporous bioactive glasses nanospheres: in vitro hydroxyapatite formation and drug delivery. Colloids Surf, B 160:406–415

    Article  CAS  Google Scholar 

  • Watts SJ, Hill RG, O’donnell MD, Law RV (2010) Influence of magnesia on the structure and properties of bioactive glasses, J Non-Crystalline Solids, 356: 517-24

  • Westhauser F, Weis C, Prokscha M, Bittrich LA, Li W, **ao K, Kneser U, Kauczor H-U, Schmidmaier G, Boccaccini AR (2016) Three-dimensional polymer coated 45S5-type bioactive glass scaffolds seeded with human mesenchymal stem cells show bone formation in vivo. J Mater Sci - Mater Med 27:1–7

    Article  CAS  Google Scholar 

  • Wetzel R, Brauer D (2019) ’Apatite formation of substituted bioglass 45S5: SBF vs Tris. Materials Letters 257:126760

    Article  CAS  Google Scholar 

  • Wilson J, Pigott GH, Schoen FJ, Hench LL (1981) Toxicology and biocompatibility of bioglasses. J Biomed Mater Res 15:805–817

    Article  CAS  Google Scholar 

  • Wu C, Chang J, **ao Y (2011) Mesoporous bioactive glasses as drug delivery and bone tissue regeneration platforms. Ther Deliv 2:1189–1198

    Article  CAS  Google Scholar 

  • Wu C, Chang J (2014) Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J Control Release 193:282–295

    Article  CAS  Google Scholar 

  • Wu C, Chang J, **ao Y (2013) Advanced bioactive inorganic materials for bone regeneration and drug delivery (CRC Press)

  • Zambanini, Telma, Roger Borges, Ana CS de Souza, Giselle Z Justo, Joel Machado Jr, Daniele R de Araujo, and Juliana Marchi. 2021. 'Holmium-containing bioactive glasses dispersed in poloxamer 407 hydrogel as a theragenerative composite for bone cancer treatment', Materials, 14: 1459

  • Zhang D, Munukka E, Leppäranta O, Hupa L, Ylänen HO, Salonen JI, Eerola E, Viljanen MK, Hupa M (2006) Comparison of antibacterial effect of three bioactive glasses. In Key Engineering Materials, 345–48. Trans Tech Publ

  • Zhang Ke, Fan Y, Dunne N, Li X (2018) Effect of microporosity on scaffolds for bone tissue engineering. Regenerative Biomaterials 5:115–124

    Article  Google Scholar 

  • Zhang Q, Chen X, Geng S, Wei L, Miron RJ, Zhao Y, Zhang Y (2017) Nanogel-based scaffolds fabricated for bone regeneration with mesoporous bioactive glass and strontium: in vitro and in vivo characterization. J Biomed Mater Res, Part A 105:1175–1183

    Article  CAS  Google Scholar 

  • Zhang Y, **a L, Zhai D, Shi M, Luo Y, Feng C, Fang B, Yin J, Chang J, Chengtie Wu (2015) Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. Nanoscale 7:19207–19221

    Article  CAS  Google Scholar 

  • Zheng K, Boccaccini AR (2017) Sol-gel processing of bioactive glass nanoparticles: a review. Adv Coll Interface Sci 249:363–373

    Article  CAS  Google Scholar 

  • Zhou K, Yu P, Shi X, Ling T, Zeng W, An**g C, Yang W, Zhou Z (2019) Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair, ACS nano, 13

Download references

Funding

This study received financial support from the National Institute of Dental & Craniofacial Research of the National Institutes of Health for awards R15DE027533, R56 DE029191, and 3R15DE027533-01A1W1.

Author information

Authors and Affiliations

Authors

Contributions

The authors of this manuscript contributed to the study conception and design. Material preparation and data collection and analysis were performed by Ehsan Vafa, Lobat Tayebi, Amirreza Talaiekhozani, and Milad Abbasi. The first draft of the manuscript was written by Ahmad Vaez, Mohammad Javad Azizli, Lobat Tayebi, Reza Bazargan-Lari, and Hesam Kamyab. Other authors including Ali Mohammad Amani, Hesam Kamyab, and Shreeshivadasan Chelliapan commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ahmad Vaez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The manuscript is a review paper and there is no experiment to need ethical approval.

Consent to participate

The authors of this manuscript consent to participate in the manuscript publication and the following have been explained to us: (a) The published manuscript may not be of direct benefit to us. (b) Our participation is completely voluntary.

Consent for publication

The authors of this manuscript give our consent for the publication of identifiable details, which can include photograph(s) and/or videos and/or case history and/or details within the text (“Material”) to be published in the ESPR journal.

Additional information

Responsible Editor: George Z. Kyzas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vafa, E., Tayebi, L., Abbasi, M. et al. A better roadmap for designing novel bioactive glasses: effective approaches for the development of innovative revolutionary bioglasses for future biomedical applications. Environ Sci Pollut Res 30, 116960–116983 (2023). https://doi.org/10.1007/s11356-022-24176-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-24176-1

Keywords

Navigation