Log in

Fungal biodegradation and removal of cyanobacteria and microcystins: potential applications and research needs

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

A Correction to this article was published on 03 August 2021

This article has been updated

Abstract

Harmful cyanobacterial blooms (HCB) have severe impacts on marine and freshwater systems worldwide. They cause oxygen depletion and produce potent cyanotoxins that have detrimental effects on human and environmental health and deteriorate the water quality. Biological treatment of the water for control of cyanobacterial blooms and removal of cyanotoxins can be a more economical and environment-friendly way, as they do not result in production of undesirable by-products. Most biological treatments of cyanobacteria and cyanotoxins have concentrated largely on bacteria, with little attention paid to algicidal fungi. Therefore, this review aims to provide an overview of the current status and the main progresses achieved in fungal biodegradation of HCB and cyanotoxin research. The available data revealed that 15 fungal species had high lytic activity against cyanobacteria, and 6 species were capable of degrading microcystins (MCs). Some fungal species (e.g., Aurobasidium pullulans and Trichoderma citrinoviride) have been identified to selectively inhibit the growth of cyanobacteria rather than beneficial species of other algal groups. Interestingly, some fungal strains (Trichaptum abietinum, Trichoderma citrinoviride) exhibited di-functional trait, being efficient in lysing cyanobacteria and degrading MCs released from the cells after decay. Beyond a comprehensive review of algicidal and toxin-degrading activities of fungi, this paper also identifies and prioritizes research gaps in algicidal fungi. The review also gives insights to the potential applications of algicidal fungi for removal of cyanobacterial blooms and their cyanotoxins from the aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

  • Azevedo SM, Carmichael WW, Jochimsen EM, Rinehart KL, Lau S, Shaw GR, Eaglesham GK (2002) Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicol 181-182:441–446

    Article  CAS  Google Scholar 

  • Balsano E, Esterhuizen-Londt M, Hoque E, Pflugmacher S (2015) Toxin resistance in aquatic fungi poses environmentally friendly remediation possibilities: a study on the growth responses and biosorption potential of Mucor hiemalis EH5 against cyanobacterial toxins. Int J Water Wastewater Treat 1:1–9

    Google Scholar 

  • Bao ZY, Wu Y (2016) Biodegradation of microcystin-LR by an amino acid-degrading anaerobic bacterium. Desalin Water Treat 57:870–880

    Article  CAS  Google Scholar 

  • Best JH, Pflugmacher S, Wiegand C, Eddy FB, Metcalf JS, Codd GA (2002) Effects of enteric bacterial and cyanobacterial lipopolysaccharides, and of microcystin-LR, on glutathione S-transferase activities in zebra fish (Danio rerio). Aquat Toxicol 60:223–231

    Article  CAS  Google Scholar 

  • Chen W, Song L, Gan N, Li L (2006) Sorption, degradation and mobility of microcystins in Chinese agriculture soils: risk assessment for groundwater protection. Environ Pollut 144:752–758

    Article  CAS  Google Scholar 

  • Christoffersen K, Lyck S, Winding A (2002) Microbial activity and bacterial community structure during degradation of microcystins. Aquat Microb Ecol 27:125–136

    Article  Google Scholar 

  • Codd GA, Morrison LF, Metcalf JS (2005) Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharmacol 203:264–272

    Article  CAS  Google Scholar 

  • Dai W, Chen X, Wang X, Xu Z, Gao X, Jiang C, Deng R, Han G (2018) The Algicidal fungus Trametes versicolor F21a eliminating blue algae via genes encoding degradation enzymes and metabolic pathways revealed by transcriptomic analysis. Front Microbiol 9:826. https://doi.org/10.3389/fmicb.2018.00826

    Article  Google Scholar 

  • Esterhuizen-Londt M, Hertel S, Pflugmacher S (2017) Uptake and biotransformation of pure commercial microcystin-LR versus microcystin-LR from a natural cyanobacterial bloom extract in the aquatic fungus Mucor hiemalis. Biotechnol Lett 39:1537–1545

    Article  CAS  Google Scholar 

  • Han G, Feng X, Jia Y, Wang C, He X, Zhou Q, Tian X (2011) Isolation and evaluation of terrestrial fungi with algicidal ability from Zi** Mountain, Nan**g, China. J Microbiol 49:562–567

    Article  CAS  Google Scholar 

  • Han G, Ma H, Ren S, Gao X, He X, Zhu S, Deng R, Zhang S (2020) Insights into the mechanism of cyanobacteria removal by the algicidal fungi Bjerkandera adusta and Trametes versicolor. Microbiol Open 9:e1042. https://doi.org/10.1002/mbo3.1042

    Article  CAS  Google Scholar 

  • Hou X, Huang J, Tang J, Wang NA, Zhang LU, Gu L, Sun Y, Yang Z, Huang Y (2019) Allelopathic inhibition of juglone (5-hydroxy-1,4-naphthoquinone) on the growth and physiological performance in Microcystis aeruginosa. J Environ Manag 232:382–386

    Article  CAS  Google Scholar 

  • Hu X, Xu Y, Su HC, Xu WJ, Wang LH, Xu YN, Li ZJ, Yu-Cheng Cao YC, Wen GL (2019) Algicidal bacterium CZBC1 inhibits the growth of Oscillatoria chlorina, Oscillatoria tenuis, and Oscillatoria planctonica. AMB Express 9:144

    Article  CAS  Google Scholar 

  • Jia Y, Han G, Wang C, Guo P, Jiang W, LiX TX (2010) The efficacy and mechanisms of fungal suppression of freshwater harmful algal bloom species. J Hazard Mater 183:176–181

    Article  CAS  Google Scholar 

  • Jia Y, Wang C, Zhao G, Guo P, Tian X (2012a) The possibility of using cyanobacterial bloom materials as a medium for white rot fungi. Lett Appl Microbiol 54:96–101

    Article  CAS  Google Scholar 

  • Jia Y, Du J, Song F, Zhao G, Tian X (2012b) A fungus capable of degrading microcystin-LR in the algal culture of Microcystis aeruginosa PCC7806. Appl Biochem Biotechnol 166:987–996

    Article  CAS  Google Scholar 

  • Jones GJ, Bourne DG, Blakeley RL, Doelle H (1994) Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria. Nat Toxins 2:228–235

    Article  CAS  Google Scholar 

  • Kinley CM, Iwinski-Wood KJ, Geer TD, Hendrikse M, McQueen AD, Calomeni AJ, Liang J, Friesen V, Simair MC, Rodgers JH (2018) Microcystin-LR degradation following copper-based algaecide exposures. Water Air Soil Pollut 229:62

    Article  CAS  Google Scholar 

  • Li HX, Lu ZM, Zhu Q, Gong JS, Geng Y, Shi JS, Xu Z, Ma Y (2017a) Comparative transcriptomic and proteomic analyses reveal a FluG-mediated signaling pathway relating to asexual sporulation of Antrodia camphorata. Proteomics 17:1700256

    Article  CAS  Google Scholar 

  • Li J, Li R, Li J (2017b) Current research scenario for microcystins biodegradation – a review on fundamental knowledge, application prospects and challenges. Sci Total Environ 595:615–632

    Article  CAS  Google Scholar 

  • Luo J, Wang Y, Tang S, Liang J, Lin W, Luo L (2013) Isolation and identification of algicidal compound from Streptomyces and algicidal mechanism to Microcystis aeruginosa. PLoS One 8(10):e76444

    Article  CAS  Google Scholar 

  • Ma GX, Pei HY, Hu WR, Xu XC, Ma CX, Pei RT (2016) Effects of glucose on microcystin-LR removal and the bacterial community composition through anoxic biodegradation in drinking water sludge. Environ Technol 37:64–73

    Article  CAS  Google Scholar 

  • Massey IY, Yang F (2020) A mini review on microcystins and bacterial degradation. Toxins 12:268

    Article  CAS  Google Scholar 

  • Mohamed ZA (2016) Harmful cyanobacteria and their cyanotoxins in Egyptian fresh waters – state of knowledge and research needs. Afr J Aquat Sci 41:361–368

    Article  CAS  Google Scholar 

  • Mohamed ZA (2017) Macrophytes-Cyanobacteria allelopathic interactions and their implications for water resources management−a review. Limnol 63:122–132

    Article  CAS  Google Scholar 

  • Mohamed ZA, Al-Shehri AM (2013) Grazing on Microcystis aeruginosa and degradation of microcystins by the heterotrophic flagellate Diphylleia rotans. Ecotoxicol Environ Saf 96:48–52

    Article  CAS  Google Scholar 

  • Mohamed ZA, Hashem M, Alamri SA (2014) Growth inhibition of the cyanobacterium Microcystis aeruginosa and degradation of its microcystin toxins by the fungus Trichoderma citrinoviride. Toxicon 86:51–58

    Article  CAS  Google Scholar 

  • Mohamed ZA, Alamri S, Hashem M, Mostafa Y (2020) Growth inhibition of Microcystis aeruginosa and adsorption of microcystin toxin by the yeast Aureobasidium pullulans, with no effect on microalgae. Environ Sci Pollut Res Int 27:38038–38046

    Article  CAS  Google Scholar 

  • Nishu SD, Kang Y, Han I, Jung TY, Lee TK (2019) Nutritional status regulates algicidal activity of Aeromonas sp. L23 against cyanobacteria and green algae. PLoS One 14:e0213370

    Article  CAS  Google Scholar 

  • Ouyang L (2014) Enzymatic pathway for MCLR degradation by bacterium CJ5. Wuhan University of Technology, China (Master’s Thesis, in Chinese with English abstract)

  • Paerl HW, Huisman J (2008) Climate: blooms like it hot. Science 320:57–58

    Article  CAS  Google Scholar 

  • Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65:995–1010

    Article  CAS  Google Scholar 

  • Pflugmacher S, Wiegand C, Beattie KA, Codd GA, Steinberg C (1998) Uptake of the cyanobacterial hepatotoxin microcystin-LR by aquatic macrophytes. J Appl Bot 72:228–232

    CAS  Google Scholar 

  • Pham T-L, Utsumi M (2018) An overview of the accumulation of microcystins in aquatic ecosystems. J Environ Manag 213:520–529

    Article  CAS  Google Scholar 

  • Redhead K, Wright SJ (1978) Isolation and properties of fungi that lyse blue-green algae. Appl Environ Microbiol 35(35):962–969

    Article  CAS  Google Scholar 

  • Ross C, Santiago-Vazquez L, Paul V (2006) Toxins release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Aquat Toxicol 78:66–73

    Article  CAS  Google Scholar 

  • Safferman RS, Morris M-E (1962) Evaluation of natural products for algicidal properties. Appl Microbiol 10:289–292

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar PS (2009) Decolorization and biodegradation of textile dye Navy blue HER by Trichosporon beigelii NCIM-3326. J Hazard Mater 166:1421–1428

    Article  CAS  Google Scholar 

  • Schaeffer BA, Bailey SW, Conmy RN, Galvin M, Ignatius AR, Johnston JM, Keith DJ, Lunetta RS, Parmar R, Stumpf RP, Urquhart EA, Werdell PJ, Wolfe K (2018) Mobile device application for monitoring cyanobacteria harmful algal blooms using Sentinel-3 satellite ocean and land colour instruments. Environ Model Softw 109:93–103

    Article  Google Scholar 

  • Shao J, Li R, Lepo JE, Gu J-D (2013) Potential for control of harmful cyanobacterial blooms using biologically derived substances: problems and prospects. J Environ Manag 125:149–155

    Article  Google Scholar 

  • Van Wichelen J, Vanormelingen P, Codd GA, Vyverman W (2016) The common bloom-forming cyanobacterium Microcystis is prone to a wide array of microbial antagonists. Harmful Algae 55:97–111

    Article  CAS  Google Scholar 

  • Visser PM, Verspagen JMH, Sandrini G, Stal LJ, Matthijs HCP, Davis TW, Paerl HW, Huisman J (2016) How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54:145–159

    Article  CAS  Google Scholar 

  • Wang Q, Su M, Zhu W, Li X, Jia Y, Guo P, Chen Z, Jiang W, Tian X (2010) Growth inhibition of Microcystis aeruginosa by white-rot fungus Lopharia spadicea. Water Sci Technol 62:317–323

    Article  CAS  Google Scholar 

  • Yang J, Qiao K, Lv J, Liu Q, Nan F, **e S, Feng J (2020) Isolation and identification of two algae-lysing bacteria against Microcystis aeruginosa. Water 12:2485

    Article  CAS  Google Scholar 

  • Yuan XZ, Shi XS, Zhang DL, Qiu YL, Guo RB, Wang LS (2011) Biogas production and microcystin biodegradation in anaerobic digestion of blue algae. Energy Environ Sci 4:1511–1151

    Article  CAS  Google Scholar 

  • Zeng GM, Wang P, Wang Y (2015) Algicidal efficiency and mechanism of Phanerochaete chrysosporium against harmful algal bloom species. Algal Res 12:182–190

    Article  Google Scholar 

  • Zeng G, Gao P, Wang J, Zhang J, Zhang M, Sun D (2020) Algicidal molecular mechanism and toxicological degradation of Microcystis aeruginosa by white-rot fungi. Toxins 12:406

    Article  CAS  Google Scholar 

  • Zhang Y, **e HF (2012) Study on biodegradation of microcystin-LR by white-rot fungus S. commune. Environ Pollut Control J 34:56–60

    Google Scholar 

Download references

Funding

The authors declare that funding received from the Deanship of Scientific Research- King Khalid University, Saudi Arabia, through General Research Program under grant number G.R.P.24/42, and from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 823860, were used in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MH and SA collected and tabulated data of antialgal and toxin-degrading fungi. AC and VV participated in analysis and interpretation of the data. ZM participated in analysis and interpretation of the data, and was a major contributor in writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zakaria A. Mohamed.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, Z.A., Hashem, M., Alamri, S. et al. Fungal biodegradation and removal of cyanobacteria and microcystins: potential applications and research needs. Environ Sci Pollut Res 28, 37041–37050 (2021). https://doi.org/10.1007/s11356-021-14623-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14623-w

Keywords

Navigation